import gradio as gr
# Import modules from other files
from chatbot import chatbot, model_inference, BOT_AVATAR, EXAMPLES, model_selector, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p
from voice_chat import respond
from live_chat import videochat
# Define Gradio theme
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="orange",
neutral_hue="gray",
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif']
).set(
body_background_fill_dark="#111111",
block_background_fill_dark="#111111",
block_border_width="1px",
block_title_background_fill_dark="#1e1c26",
input_background_fill_dark="#292733",
button_secondary_background_fill_dark="#24212b",
border_color_primary_dark="#343140",
background_fill_secondary_dark="#111111",
color_accent_soft_dark="transparent"
)
# Create Gradio blocks for different functionalities
# Chat interface block
with gr.Blocks(
fill_height=True,
css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""",
) as chat:
gr.Markdown("# Image Chat, Image Generation, Image classification and Normal Chat")
with gr.Row(elem_id="model_selector_row"):
# model_selector defined in chatbot.py
pass
# decoding_strategy, temperature, top_p defined in chatbot.py
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection
in [
"contrastive_sampling",
"beam_sampling",
"Top P Sampling",
"sampling_top_k",
]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
gr.ChatInterface(
fn=model_inference,
chatbot=chatbot,
examples=EXAMPLES,
multimodal=True,
cache_examples=False,
additional_inputs=[
model_selector,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
gr.Checkbox(label="Web Search", value=True),
],
)
# Voice chat block
with gr.Blocks() as voice:
with gr.Row():
input = gr.Audio(label="Voice Chat (BETA)", sources="microphone", type="filepath", waveform_options=False)
output = gr.Audio(label="JARVIS", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
gr.Interface(fn=respond, inputs=[input], outputs=[output])
input.stop_recording(fn=respond, inputs=[input], outputs=[output])
# Live chat block
with gr.Blocks() as livechat:
gr.Interface(
fn=videochat,
inputs=[gr.Image(type="pil",sources="webcam", label="Upload Image"), gr.Textbox(label="Prompt", value="what he is doing")],
outputs=gr.Textbox(label="Answer")
)
# Other blocks (instant, dalle, playground, image, instant2, video)
with gr.Blocks() as instant:
gr.HTML("")
with gr.Blocks() as dalle:
gr.HTML("")
with gr.Blocks() as playground:
gr.HTML("")
with gr.Blocks() as image:
gr.Markdown("""### More models are coming""")
gr.TabbedInterface([ instant, dalle, playground], ['Instant🖼️','Powerful🖼️', 'Playground🖼'])
with gr.Blocks() as instant2:
gr.HTML("")
with gr.Blocks() as video:
gr.Markdown("""More Models are coming""")
gr.TabbedInterface([ instant2], ['Instant🎥'])
# Main application block
with gr.Blocks(theme=theme, title="OpenGPT 4o DEMO") as demo:
gr.Markdown("# OpenGPT 4o")
gr.TabbedInterface([chat, voice, livechat, image, video], ['💬 SuperChat','🗣️ Voice Chat','📸 Live Chat', '🖼️ Image Engine', '🎥 Video Engine'])
demo.queue(max_size=300)
demo.launch()