from TTS.api import TTS tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) import whisper model = whisper.load_model("small") import os os.system('pip install voicefixer --upgrade') from voicefixer import VoiceFixer voicefixer = VoiceFixer() import gradio as gr import openai import torch import torchaudio from speechbrain.pretrained import SpectralMaskEnhancement enhance_model = SpectralMaskEnhancement.from_hparams( source="speechbrain/metricgan-plus-voicebank", savedir="pretrained_models/metricgan-plus-voicebank", run_opts={"device":"cuda"}, ) mes1 = [ {"role": "system", "content": "You are a TOEFL examiner. Help me improve my oral Englsih and give me feedback."} ] mes2 = [ {"role": "system", "content": "You are a mental health therapist. Your name is Tina."} ] mes3 = [ {"role": "system", "content": "You are my personal assistant. Your name is Alice."} ] res = [] def transcribe(apikey, upload, audio, choice1): openai.api_key = apikey # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs = model.detect_language(mel) print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio options = whisper.DecodingOptions() result = whisper.decode(model, mel, options) res.append(result.text) if choice1 == "TOEFL": messages = mes1 elif choice1 == "Therapist": messages = mes2 elif choice1 == "Alice": messages = mes3 # chatgpt n = len(res) content = res[n-1] messages.append({"role": "user", "content": content}) completion = openai.ChatCompletion.create( model = "gpt-3.5-turbo", messages = messages ) chat_response = completion.choices[0].message.content messages.append({"role": "assistant", "content": chat_response}) tts.tts_to_file(chat_response, speaker_wav = upload, language="en", file_path="output.wav") voicefixer.restore(input="output.wav", # input wav file path output="audio1.wav", # output wav file path cuda=True, # whether to use gpu acceleration mode = 0) # You can try out mode 0, 1, or 2 to find out the best result noisy = enhance_model.load_audio( "audio1.wav" ).unsqueeze(0) enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.])) torchaudio.save("enhanced.wav", enhanced.cpu(), 16000) return [result.text, chat_response, "enhanced.wav"] c1=gr.Interface( fn=transcribe, inputs=[ gr.Textbox(lines=1, label = "请填写您的OpenAI-API-key"), gr.Audio(source="upload", label = "请上传您喜欢的声音(wav文件)", type="filepath"), gr.Audio(source="microphone", label = "和您的专属AI聊天吧!", type="filepath"), gr.Radio(["TOEFL", "Therapist", "Alice"], label="TOEFL Examiner, Therapist Tina, or Assistant Alice?"), ], outputs=[ gr.Textbox(label="Speech to Text"), gr.Textbox(label="ChatGPT Output"), gr.Audio(label="Audio with Custom Voice"), ], #theme="huggingface", description = "🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!", ) c2=gr.Interface( fn=transcribe, inputs=[ gr.Textbox(lines=1, label = "请填写您的OpenAI-API-key"), gr.Audio(source="microphone", label = "请上传您喜欢的声音,并尽量避免噪音", type="filepath"), gr.Audio(source="microphone", label = "和您的专属AI聊天吧!", type="filepath"), gr.Radio(["TOEFL", "Therapist", "Alice"], label="TOEFL Examiner, Therapist Tina, or Assistant Alice?"), ], outputs=[ gr.Textbox(label="Speech to Text"), gr.Textbox(label="ChatGPT Output"), gr.Audio(label="Audio with Custom Voice"), ], #theme="huggingface", description = "🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!", ) demo = gr.TabbedInterface([c1, c2], ["wav文件上传", "麦克风上传"], title = '🥳💬💕 - TalktoAI,随时随地,谈天说地!') demo.launch()