import streamlit as st from sentence_transformers import SentenceTransformer from langdetect import detect, DetectorFactory st.set_page_config(page_title="Simple Text Analysis", layout="wide") @st.cache_resource def load_model(): return SentenceTransformer('distiluse-base-multilingual-cased-v1') DetectorFactory.seed = 0 model = load_model() st.title("Simple Text Analysis") user_input = st.text_area("Enter your text here:") if st.button("Analyze"): if user_input: try: lang = detect(user_input) st.write(f"Detected language: {lang}") embedding = model.encode(user_input) st.write(f"Text embedding shape: {embedding.shape}") st.write("First few values of the embedding:") st.write(embedding[:5]) except Exception as e: st.error(f"An error occurred: {str(e)}") else: st.warning("Please enter some text to analyze.") st.sidebar.title("About") st.sidebar.info("This is a simple text analysis app.")