import gradio as gr import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # set device to a specific GPU (e.g., GPU 0) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_name = 'cognitivecomputations/dolphin-vision-7b' # create model and load it to the specified device model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # device_map='auto', # Remove auto device mapping trust_remote_code=True ).to(device) # Load the model to the specified device tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True ) def inference(prompt, image): messages = [ {"role": "user", "content": f'\n{prompt}'} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0) image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device) # Generate with autocast for mixed precision on the specified GPU with torch.cuda.amp.autocast(): output_ids = model.generate( input_ids.to(device), images=image_tensor, max_new_tokens=2048, use_cache=True )[0] return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() with gr.Blocks() as demo: with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") image_input = gr.Image(label="Image", type="pil") submit_button = gr.Button("Submit") with gr.Column(): output_text = gr.Textbox(label="Output") submit_button.click(fn=inference, inputs=[prompt_input, image_input], outputs=output_text) demo.launch()