{
"cells": [
{
"cell_type": "code",
"execution_count": 151,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0aRKNOQCMX05",
"outputId": "0c47537d-2463-4efe-f590-7d4db7866e28"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: pycaret in /usr/local/lib/python3.10/dist-packages (3.3.2)\n",
"Requirement already satisfied: ipython>=5.5.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (7.34.0)\n",
"Requirement already satisfied: ipywidgets>=7.6.5 in /usr/local/lib/python3.10/dist-packages (from pycaret) (7.7.1)\n",
"Requirement already satisfied: tqdm>=4.62.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (4.66.2)\n",
"Requirement already satisfied: numpy<1.27,>=1.21 in /usr/local/lib/python3.10/dist-packages (from pycaret) (1.25.2)\n",
"Requirement already satisfied: pandas<2.2.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (2.0.3)\n",
"Requirement already satisfied: jinja2>=3 in /usr/local/lib/python3.10/dist-packages (from pycaret) (3.1.3)\n",
"Requirement already satisfied: scipy<=1.11.4,>=1.6.1 in /usr/local/lib/python3.10/dist-packages (from pycaret) (1.11.4)\n",
"Requirement already satisfied: joblib<1.4,>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (1.3.2)\n",
"Requirement already satisfied: scikit-learn>1.4.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (1.4.2)\n",
"Requirement already satisfied: pyod>=1.1.3 in /usr/local/lib/python3.10/dist-packages (from pycaret) (1.1.3)\n",
"Requirement already satisfied: imbalanced-learn>=0.12.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (0.12.2)\n",
"Requirement already satisfied: category-encoders>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (2.6.3)\n",
"Requirement already satisfied: lightgbm>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (4.1.0)\n",
"Requirement already satisfied: numba>=0.55.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (0.58.1)\n",
"Requirement already satisfied: requests>=2.27.1 in /usr/local/lib/python3.10/dist-packages (from pycaret) (2.31.0)\n",
"Requirement already satisfied: psutil>=5.9.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (5.9.5)\n",
"Requirement already satisfied: markupsafe>=2.0.1 in /usr/local/lib/python3.10/dist-packages (from pycaret) (2.1.5)\n",
"Requirement already satisfied: importlib-metadata>=4.12.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (7.1.0)\n",
"Requirement already satisfied: nbformat>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (5.10.4)\n",
"Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from pycaret) (2.2.1)\n",
"Requirement already satisfied: deprecation>=2.1.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (2.1.0)\n",
"Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from pycaret) (3.4.1)\n",
"Requirement already satisfied: matplotlib<3.8.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (3.7.5)\n",
"Requirement already satisfied: scikit-plot>=0.3.7 in /usr/local/lib/python3.10/dist-packages (from pycaret) (0.3.7)\n",
"Requirement already satisfied: yellowbrick>=1.4 in /usr/local/lib/python3.10/dist-packages (from pycaret) (1.5)\n",
"Requirement already satisfied: plotly>=5.14.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (5.15.0)\n",
"Requirement already satisfied: kaleido>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from pycaret) (0.2.1)\n",
"Requirement already satisfied: schemdraw==0.15 in /usr/local/lib/python3.10/dist-packages (from pycaret) (0.15)\n",
"Requirement already satisfied: plotly-resampler>=0.8.3.1 in /usr/local/lib/python3.10/dist-packages (from pycaret) (0.10.0)\n",
"Requirement already satisfied: statsmodels>=0.12.1 in /usr/local/lib/python3.10/dist-packages (from pycaret) (0.14.2)\n",
"Requirement already satisfied: sktime==0.26.0 in /usr/local/lib/python3.10/dist-packages (from pycaret) (0.26.0)\n",
"Requirement already satisfied: tbats>=1.1.3 in /usr/local/lib/python3.10/dist-packages (from pycaret) (1.1.3)\n",
"Requirement already satisfied: pmdarima>=2.0.4 in /usr/local/lib/python3.10/dist-packages (from pycaret) (2.0.4)\n",
"Requirement already satisfied: wurlitzer in /usr/local/lib/python3.10/dist-packages (from pycaret) (3.1.0)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from sktime==0.26.0->pycaret) (24.0)\n",
"Requirement already satisfied: scikit-base<0.8.0 in /usr/local/lib/python3.10/dist-packages (from sktime==0.26.0->pycaret) (0.7.7)\n",
"Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.10/dist-packages (from category-encoders>=2.4.0->pycaret) (0.5.6)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from imbalanced-learn>=0.12.0->pycaret) (3.4.0)\n",
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata>=4.12.0->pycaret) (3.18.1)\n",
"Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (67.7.2)\n",
"Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (0.19.1)\n",
"Requirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (4.4.2)\n",
"Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (0.7.5)\n",
"Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (5.7.1)\n",
"Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (3.0.43)\n",
"Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (2.16.1)\n",
"Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (0.2.0)\n",
"Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (0.1.7)\n",
"Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=5.5.0->pycaret) (4.9.0)\n",
"Requirement already satisfied: ipykernel>=4.5.1 in /usr/local/lib/python3.10/dist-packages (from ipywidgets>=7.6.5->pycaret) (5.5.6)\n",
"Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets>=7.6.5->pycaret) (0.2.0)\n",
"Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets>=7.6.5->pycaret) (3.6.6)\n",
"Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets>=7.6.5->pycaret) (3.0.10)\n",
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.8.0->pycaret) (1.2.1)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.8.0->pycaret) (0.12.1)\n",
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.8.0->pycaret) (4.51.0)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.8.0->pycaret) (1.4.5)\n",
"Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.8.0->pycaret) (9.4.0)\n",
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.8.0->pycaret) (3.1.2)\n",
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<3.8.0->pycaret) (2.8.2)\n",
"Requirement already satisfied: fastjsonschema>=2.15 in /usr/local/lib/python3.10/dist-packages (from nbformat>=4.2.0->pycaret) (2.19.1)\n",
"Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat>=4.2.0->pycaret) (4.19.2)\n",
"Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in /usr/local/lib/python3.10/dist-packages (from nbformat>=4.2.0->pycaret) (5.7.2)\n",
"Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba>=0.55.0->pycaret) (0.41.1)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<2.2.0->pycaret) (2023.4)\n",
"Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas<2.2.0->pycaret) (2024.1)\n",
"Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly>=5.14.0->pycaret) (8.2.3)\n",
"Requirement already satisfied: dash>=2.9.0 in /usr/local/lib/python3.10/dist-packages (from plotly-resampler>=0.8.3.1->pycaret) (2.16.1)\n",
"Requirement already satisfied: orjson<4.0.0,>=3.8.0 in /usr/local/lib/python3.10/dist-packages (from plotly-resampler>=0.8.3.1->pycaret) (3.10.1)\n",
"Requirement already satisfied: tsdownsample>=0.1.3 in /usr/local/lib/python3.10/dist-packages (from plotly-resampler>=0.8.3.1->pycaret) (0.1.3)\n",
"Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in /usr/local/lib/python3.10/dist-packages (from pmdarima>=2.0.4->pycaret) (3.0.10)\n",
"Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from pmdarima>=2.0.4->pycaret) (2.0.7)\n",
"Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from pyod>=1.1.3->pycaret) (1.16.0)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.27.1->pycaret) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.27.1->pycaret) (3.7)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.27.1->pycaret) (2024.2.2)\n",
"Requirement already satisfied: Flask<3.1,>=1.0.4 in /usr/local/lib/python3.10/dist-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (2.2.5)\n",
"Requirement already satisfied: Werkzeug<3.1 in /usr/local/lib/python3.10/dist-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (3.0.2)\n",
"Requirement already satisfied: dash-html-components==2.0.0 in /usr/local/lib/python3.10/dist-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (2.0.0)\n",
"Requirement already satisfied: dash-core-components==2.0.0 in /usr/local/lib/python3.10/dist-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (2.0.0)\n",
"Requirement already satisfied: dash-table==5.0.0 in /usr/local/lib/python3.10/dist-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (5.0.0)\n",
"Requirement already satisfied: typing-extensions>=4.1.1 in /usr/local/lib/python3.10/dist-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (4.11.0)\n",
"Requirement already satisfied: retrying in /usr/local/lib/python3.10/dist-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (1.3.4)\n",
"Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.10/dist-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (1.6.0)\n",
"Requirement already satisfied: jupyter-client in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets>=7.6.5->pycaret) (6.1.12)\n",
"Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets>=7.6.5->pycaret) (6.3.3)\n",
"Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=5.5.0->pycaret) (0.8.4)\n",
"Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat>=4.2.0->pycaret) (23.2.0)\n",
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat>=4.2.0->pycaret) (2023.12.1)\n",
"Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat>=4.2.0->pycaret) (0.34.0)\n",
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat>=4.2.0->pycaret) (0.18.0)\n",
"Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core!=5.0.*,>=4.12->nbformat>=4.2.0->pycaret) (4.2.0)\n",
"Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=5.5.0->pycaret) (0.7.0)\n",
"Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=5.5.0->pycaret) (0.2.13)\n",
"Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.10/dist-packages (from widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (6.5.5)\n",
"Requirement already satisfied: itsdangerous>=2.0 in /usr/local/lib/python3.10/dist-packages (from Flask<3.1,>=1.0.4->dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (2.2.0)\n",
"Requirement already satisfied: click>=8.0 in /usr/local/lib/python3.10/dist-packages (from Flask<3.1,>=1.0.4->dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (8.1.7)\n",
"Requirement already satisfied: pyzmq<25,>=17 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (23.2.1)\n",
"Requirement already satisfied: argon2-cffi in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (23.1.0)\n",
"Requirement already satisfied: nbconvert>=5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (6.5.4)\n",
"Requirement already satisfied: Send2Trash>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (1.8.3)\n",
"Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (0.18.1)\n",
"Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (0.20.0)\n",
"Requirement already satisfied: nbclassic>=0.4.7 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (1.0.0)\n",
"Requirement already satisfied: jupyter-server>=1.8 in /usr/local/lib/python3.10/dist-packages (from nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (1.24.0)\n",
"Requirement already satisfied: notebook-shim>=0.2.3 in /usr/local/lib/python3.10/dist-packages (from nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (0.2.4)\n",
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (4.9.4)\n",
"Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (4.12.3)\n",
"Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (6.1.0)\n",
"Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (0.7.1)\n",
"Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (0.4)\n",
"Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (0.3.0)\n",
"Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (0.8.4)\n",
"Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (0.10.0)\n",
"Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (1.5.1)\n",
"Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (1.2.1)\n",
"Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (21.2.0)\n",
"Requirement already satisfied: anyio<4,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (3.7.1)\n",
"Requirement already satisfied: websocket-client in /usr/local/lib/python3.10/dist-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (1.7.0)\n",
"Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (1.16.0)\n",
"Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (2.5)\n",
"Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (0.5.1)\n",
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (1.3.1)\n",
"Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (1.2.1)\n",
"Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets>=7.6.5->pycaret) (2.22)\n"
]
}
],
"source": [
"! pip install pycaret"
]
},
{
"cell_type": "code",
"execution_count": 151,
"metadata": {
"id": "au4OTjRXymx9"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 152,
"metadata": {
"id": "l39NktdRMXwS"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import pycaret as py\n",
"from io import BytesIO"
]
},
{
"cell_type": "code",
"execution_count": 153,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 424
},
"id": "OIZXsSExMXqG",
"outputId": "960ee927-bffe-4b9e-d78a-043021b2245c"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"data\",\n \"rows\": 1338,\n \"fields\": [\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 14,\n \"min\": 18,\n \"max\": 64,\n \"num_unique_values\": 47,\n \"samples\": [\n 21,\n 45,\n 36\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sex\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"male\",\n \"female\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"bmi\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6.098186911679014,\n \"min\": 15.96,\n \"max\": 53.13,\n \"num_unique_values\": 548,\n \"samples\": [\n 23.18,\n 26.885\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"children\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 5,\n \"num_unique_values\": 6,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"smoker\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"no\",\n \"yes\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"region\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"southeast\",\n \"northeast\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"charges\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 12110.011236694001,\n \"min\": 1121.8739,\n \"max\": 63770.42801,\n \"num_unique_values\": 1337,\n \"samples\": [\n 8688.85885,\n 5708.867\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "data"
},
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age \n",
" sex \n",
" bmi \n",
" children \n",
" smoker \n",
" region \n",
" charges \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 19 \n",
" female \n",
" 27.900 \n",
" 0 \n",
" yes \n",
" southwest \n",
" 16884.92400 \n",
" \n",
" \n",
" 1 \n",
" 18 \n",
" male \n",
" 33.770 \n",
" 1 \n",
" no \n",
" southeast \n",
" 1725.55230 \n",
" \n",
" \n",
" 2 \n",
" 28 \n",
" male \n",
" 33.000 \n",
" 3 \n",
" no \n",
" southeast \n",
" 4449.46200 \n",
" \n",
" \n",
" 3 \n",
" 33 \n",
" male \n",
" 22.705 \n",
" 0 \n",
" no \n",
" northwest \n",
" 21984.47061 \n",
" \n",
" \n",
" 4 \n",
" 32 \n",
" male \n",
" 28.880 \n",
" 0 \n",
" no \n",
" northwest \n",
" 3866.85520 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1333 \n",
" 50 \n",
" male \n",
" 30.970 \n",
" 3 \n",
" no \n",
" northwest \n",
" 10600.54830 \n",
" \n",
" \n",
" 1334 \n",
" 18 \n",
" female \n",
" 31.920 \n",
" 0 \n",
" no \n",
" northeast \n",
" 2205.98080 \n",
" \n",
" \n",
" 1335 \n",
" 18 \n",
" female \n",
" 36.850 \n",
" 0 \n",
" no \n",
" southeast \n",
" 1629.83350 \n",
" \n",
" \n",
" 1336 \n",
" 21 \n",
" female \n",
" 25.800 \n",
" 0 \n",
" no \n",
" southwest \n",
" 2007.94500 \n",
" \n",
" \n",
" 1337 \n",
" 61 \n",
" female \n",
" 29.070 \n",
" 0 \n",
" yes \n",
" northwest \n",
" 29141.36030 \n",
" \n",
" \n",
"
\n",
"
1338 rows × 7 columns
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" age sex bmi children smoker region charges\n",
"0 19 female 27.900 0 yes southwest 16884.92400\n",
"1 18 male 33.770 1 no southeast 1725.55230\n",
"2 28 male 33.000 3 no southeast 4449.46200\n",
"3 33 male 22.705 0 no northwest 21984.47061\n",
"4 32 male 28.880 0 no northwest 3866.85520\n",
"... ... ... ... ... ... ... ...\n",
"1333 50 male 30.970 3 no northwest 10600.54830\n",
"1334 18 female 31.920 0 no northeast 2205.98080\n",
"1335 18 female 36.850 0 no southeast 1629.83350\n",
"1336 21 female 25.800 0 no southwest 2007.94500\n",
"1337 61 female 29.070 0 yes northwest 29141.36030\n",
"\n",
"[1338 rows x 7 columns]"
]
},
"execution_count": 153,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# import du dataset dans une variable et affichage les lignes du dataset\n",
"data = pd.read_csv(\"insurance.csv\")\n",
"data\n"
]
},
{
"cell_type": "code",
"execution_count": 154,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ptISOb7sM1Bk",
"outputId": "e1f1a1ef-73a6-4207-8f87-e60bd16c3251"
},
"outputs": [
{
"data": {
"text/plain": [
"(1338, 7)"
]
},
"execution_count": 154,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Connaitre les dimensions du dataset\n",
"data.shape"
]
},
{
"cell_type": "code",
"execution_count": 155,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lbkacd3WM0ze",
"outputId": "11064f76-2055-444d-c686-5996d3d6900c"
},
"outputs": [
{
"data": {
"text/plain": [
"False 1337\n",
"True 1\n",
"Name: count, dtype: int64"
]
},
"execution_count": 155,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Vérification des lignes dupliquées\n",
"data_duplicated = data.duplicated()\n",
"data_duplicated.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 156,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "laLj8fnPMXkq",
"outputId": "2075a0d4-5b03-423b-ee73-1ac8fbbf9352"
},
"outputs": [
{
"data": {
"text/plain": [
"age int64\n",
"sex object\n",
"bmi float64\n",
"children int64\n",
"smoker object\n",
"region object\n",
"charges float64\n",
"dtype: object"
]
},
"execution_count": 156,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 157,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "anbrMmvhfW8C",
"outputId": "edd5918a-51e1-49d6-f94b-80810c4ab795"
},
"outputs": [
{
"data": {
"text/plain": [
"array(['female', 'male'], dtype=object)"
]
},
"execution_count": 157,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"sex\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 158,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XAsgzM5QfWza",
"outputId": "673a57c3-5e85-4cb6-8656-710b4dd424b0"
},
"outputs": [
{
"data": {
"text/plain": [
"array(['yes', 'no'], dtype=object)"
]
},
"execution_count": 158,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"smoker\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 159,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "TN7InbECfWsV",
"outputId": "ae46c890-a5e1-4e5f-82bf-1de5b835b07b"
},
"outputs": [
{
"data": {
"text/plain": [
"array(['southwest', 'southeast', 'northwest', 'northeast'], dtype=object)"
]
},
"execution_count": 159,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"region\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 159,
"metadata": {
"id": "_J-U449nfWjr"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 160,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 424
},
"id": "q0zGNXcWfWCS",
"outputId": "bba59022-0fc0-42d4-a14a-b025871025d0"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"data\",\n \"rows\": 1338,\n \"fields\": [\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 14,\n \"min\": 18,\n \"max\": 64,\n \"num_unique_values\": 47,\n \"samples\": [\n 21,\n 45,\n 36\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sex\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"male\",\n \"female\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"bmi\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6.098186911679014,\n \"min\": 15.96,\n \"max\": 53.13,\n \"num_unique_values\": 548,\n \"samples\": [\n 23.18,\n 26.885\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"children\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 5,\n \"num_unique_values\": 6,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"smoker\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"region\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"southeast\",\n \"northeast\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"charges\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 12110.011236694001,\n \"min\": 1121.8739,\n \"max\": 63770.42801,\n \"num_unique_values\": 1337,\n \"samples\": [\n 8688.85885,\n 5708.867\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "data"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age \n",
" sex \n",
" bmi \n",
" children \n",
" smoker \n",
" region \n",
" charges \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 19 \n",
" female \n",
" 27.900 \n",
" 0 \n",
" 1 \n",
" southwest \n",
" 16884.92400 \n",
" \n",
" \n",
" 1 \n",
" 18 \n",
" male \n",
" 33.770 \n",
" 1 \n",
" 0 \n",
" southeast \n",
" 1725.55230 \n",
" \n",
" \n",
" 2 \n",
" 28 \n",
" male \n",
" 33.000 \n",
" 3 \n",
" 0 \n",
" southeast \n",
" 4449.46200 \n",
" \n",
" \n",
" 3 \n",
" 33 \n",
" male \n",
" 22.705 \n",
" 0 \n",
" 0 \n",
" northwest \n",
" 21984.47061 \n",
" \n",
" \n",
" 4 \n",
" 32 \n",
" male \n",
" 28.880 \n",
" 0 \n",
" 0 \n",
" northwest \n",
" 3866.85520 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1333 \n",
" 50 \n",
" male \n",
" 30.970 \n",
" 3 \n",
" 0 \n",
" northwest \n",
" 10600.54830 \n",
" \n",
" \n",
" 1334 \n",
" 18 \n",
" female \n",
" 31.920 \n",
" 0 \n",
" 0 \n",
" northeast \n",
" 2205.98080 \n",
" \n",
" \n",
" 1335 \n",
" 18 \n",
" female \n",
" 36.850 \n",
" 0 \n",
" 0 \n",
" southeast \n",
" 1629.83350 \n",
" \n",
" \n",
" 1336 \n",
" 21 \n",
" female \n",
" 25.800 \n",
" 0 \n",
" 0 \n",
" southwest \n",
" 2007.94500 \n",
" \n",
" \n",
" 1337 \n",
" 61 \n",
" female \n",
" 29.070 \n",
" 0 \n",
" 1 \n",
" northwest \n",
" 29141.36030 \n",
" \n",
" \n",
"
\n",
"
1338 rows × 7 columns
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" age sex bmi children smoker region charges\n",
"0 19 female 27.900 0 1 southwest 16884.92400\n",
"1 18 male 33.770 1 0 southeast 1725.55230\n",
"2 28 male 33.000 3 0 southeast 4449.46200\n",
"3 33 male 22.705 0 0 northwest 21984.47061\n",
"4 32 male 28.880 0 0 northwest 3866.85520\n",
"... ... ... ... ... ... ... ...\n",
"1333 50 male 30.970 3 0 northwest 10600.54830\n",
"1334 18 female 31.920 0 0 northeast 2205.98080\n",
"1335 18 female 36.850 0 0 southeast 1629.83350\n",
"1336 21 female 25.800 0 0 southwest 2007.94500\n",
"1337 61 female 29.070 0 1 northwest 29141.36030\n",
"\n",
"[1338 rows x 7 columns]"
]
},
"execution_count": 160,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.preprocessing import LabelEncoder\n",
"le= LabelEncoder()\n",
"data.smoker = le.fit_transform (data.smoker)\n",
"data"
]
},
{
"cell_type": "code",
"execution_count": 161,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8I2pS-dugbLB",
"outputId": "fb7c6f62-1d03-45de-c076-9825f3247e39"
},
"outputs": [
{
"data": {
"text/plain": [
"array(['southwest', 'southeast', 'northwest', 'northeast'], dtype=object)"
]
},
"execution_count": 161,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"region\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 162,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "FIk0dVUqgbDe",
"outputId": "8d97e6c5-ec34-40be-9764-83df18b88fc6"
},
"outputs": [
{
"data": {
"text/plain": [
"region\n",
"northeast 324\n",
"northwest 325\n",
"southeast 364\n",
"southwest 325\n",
"dtype: int64"
]
},
"execution_count": 162,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby('region').size()"
]
},
{
"cell_type": "code",
"execution_count": 162,
"metadata": {
"id": "ATLXQdxcgaxu"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 163,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5eGXjFYHi6sL",
"outputId": "cb66da25-cce8-409b-c7dd-0b9e8cdc2a3d"
},
"outputs": [
{
"data": {
"text/plain": [
"age int64\n",
"sex object\n",
"bmi float64\n",
"children int64\n",
"smoker int64\n",
"region object\n",
"charges float64\n",
"dtype: object"
]
},
"execution_count": 163,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "q0ur-I88MXgR",
"outputId": "a659980e-aa1f-441d-923e-cb3132433f9c"
},
"outputs": [
{
"data": {
"text/plain": [
"age 0\n",
"sex 0\n",
"bmi 0\n",
"children 0\n",
"smoker 0\n",
"region 0\n",
"charges 0\n",
"dtype: int64"
]
},
"execution_count": 164,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Vérification des lignes nulles\n",
"data.isna().sum()"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 300
},
"id": "zNSNxAhdMXX-",
"outputId": "5d429439-c1e3-4b5d-8e8f-f52e8aa8e467"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"data\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 460.6106090399993,\n \"min\": 14.049960379216154,\n \"max\": 1338.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 39.20702541106129,\n 39.0,\n 1338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"bmi\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 463.29524977918294,\n \"min\": 6.098186911679014,\n \"max\": 1338.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 30.66339686098655,\n 30.4,\n 1338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"children\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 472.5368318870757,\n \"min\": 0.0,\n \"max\": 1338.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 1338.0,\n 1.0949177877429,\n 2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"smoker\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 472.9733223901743,\n \"min\": 0.0,\n \"max\": 1338.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.20478325859491778,\n 1.0,\n 0.4036940375456173\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"charges\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 20381.922846226596,\n \"min\": 1121.8739,\n \"max\": 63770.42801,\n \"num_unique_values\": 8,\n \"samples\": [\n 13270.422265141257,\n 9382.033,\n 1338.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age \n",
" bmi \n",
" children \n",
" smoker \n",
" charges \n",
" \n",
" \n",
" \n",
" \n",
" count \n",
" 1338.000000 \n",
" 1338.000000 \n",
" 1338.000000 \n",
" 1338.000000 \n",
" 1338.000000 \n",
" \n",
" \n",
" mean \n",
" 39.207025 \n",
" 30.663397 \n",
" 1.094918 \n",
" 0.204783 \n",
" 13270.422265 \n",
" \n",
" \n",
" std \n",
" 14.049960 \n",
" 6.098187 \n",
" 1.205493 \n",
" 0.403694 \n",
" 12110.011237 \n",
" \n",
" \n",
" min \n",
" 18.000000 \n",
" 15.960000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 1121.873900 \n",
" \n",
" \n",
" 25% \n",
" 27.000000 \n",
" 26.296250 \n",
" 0.000000 \n",
" 0.000000 \n",
" 4740.287150 \n",
" \n",
" \n",
" 50% \n",
" 39.000000 \n",
" 30.400000 \n",
" 1.000000 \n",
" 0.000000 \n",
" 9382.033000 \n",
" \n",
" \n",
" 75% \n",
" 51.000000 \n",
" 34.693750 \n",
" 2.000000 \n",
" 0.000000 \n",
" 16639.912515 \n",
" \n",
" \n",
" max \n",
" 64.000000 \n",
" 53.130000 \n",
" 5.000000 \n",
" 1.000000 \n",
" 63770.428010 \n",
" \n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" age bmi children smoker charges\n",
"count 1338.000000 1338.000000 1338.000000 1338.000000 1338.000000\n",
"mean 39.207025 30.663397 1.094918 0.204783 13270.422265\n",
"std 14.049960 6.098187 1.205493 0.403694 12110.011237\n",
"min 18.000000 15.960000 0.000000 0.000000 1121.873900\n",
"25% 27.000000 26.296250 0.000000 0.000000 4740.287150\n",
"50% 39.000000 30.400000 1.000000 0.000000 9382.033000\n",
"75% 51.000000 34.693750 2.000000 0.000000 16639.912515\n",
"max 64.000000 53.130000 5.000000 1.000000 63770.428010"
]
},
"execution_count": 165,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.describe()"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 424
},
"id": "WG3FXLQzMW3q",
"outputId": "6021b832-e9ea-4179-e896-4fe7ba871662"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"data\",\n \"rows\": 1338,\n \"fields\": [\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 14,\n \"min\": 18,\n \"max\": 64,\n \"num_unique_values\": 47,\n \"samples\": [\n 21,\n 45,\n 36\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sex\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"male\",\n \"female\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"bmi\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6.098186911679014,\n \"min\": 15.96,\n \"max\": 53.13,\n \"num_unique_values\": 548,\n \"samples\": [\n 23.18,\n 26.885\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"children\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 5,\n \"num_unique_values\": 6,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"smoker\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"region\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"southeast\",\n \"northeast\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"charges\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 12110.011236694001,\n \"min\": 1121.8739,\n \"max\": 63770.42801,\n \"num_unique_values\": 1337,\n \"samples\": [\n 8688.85885,\n 5708.867\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe",
"variable_name": "data"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age \n",
" sex \n",
" bmi \n",
" children \n",
" smoker \n",
" region \n",
" charges \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 19 \n",
" female \n",
" 27.900 \n",
" 0 \n",
" 1 \n",
" southwest \n",
" 16884.92400 \n",
" \n",
" \n",
" 1 \n",
" 18 \n",
" male \n",
" 33.770 \n",
" 1 \n",
" 0 \n",
" southeast \n",
" 1725.55230 \n",
" \n",
" \n",
" 2 \n",
" 28 \n",
" male \n",
" 33.000 \n",
" 3 \n",
" 0 \n",
" southeast \n",
" 4449.46200 \n",
" \n",
" \n",
" 3 \n",
" 33 \n",
" male \n",
" 22.705 \n",
" 0 \n",
" 0 \n",
" northwest \n",
" 21984.47061 \n",
" \n",
" \n",
" 4 \n",
" 32 \n",
" male \n",
" 28.880 \n",
" 0 \n",
" 0 \n",
" northwest \n",
" 3866.85520 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 1333 \n",
" 50 \n",
" male \n",
" 30.970 \n",
" 3 \n",
" 0 \n",
" northwest \n",
" 10600.54830 \n",
" \n",
" \n",
" 1334 \n",
" 18 \n",
" female \n",
" 31.920 \n",
" 0 \n",
" 0 \n",
" northeast \n",
" 2205.98080 \n",
" \n",
" \n",
" 1335 \n",
" 18 \n",
" female \n",
" 36.850 \n",
" 0 \n",
" 0 \n",
" southeast \n",
" 1629.83350 \n",
" \n",
" \n",
" 1336 \n",
" 21 \n",
" female \n",
" 25.800 \n",
" 0 \n",
" 0 \n",
" southwest \n",
" 2007.94500 \n",
" \n",
" \n",
" 1337 \n",
" 61 \n",
" female \n",
" 29.070 \n",
" 0 \n",
" 1 \n",
" northwest \n",
" 29141.36030 \n",
" \n",
" \n",
"
\n",
"
1338 rows × 7 columns
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" age sex bmi children smoker region charges\n",
"0 19 female 27.900 0 1 southwest 16884.92400\n",
"1 18 male 33.770 1 0 southeast 1725.55230\n",
"2 28 male 33.000 3 0 southeast 4449.46200\n",
"3 33 male 22.705 0 0 northwest 21984.47061\n",
"4 32 male 28.880 0 0 northwest 3866.85520\n",
"... ... ... ... ... ... ... ...\n",
"1333 50 male 30.970 3 0 northwest 10600.54830\n",
"1334 18 female 31.920 0 0 northeast 2205.98080\n",
"1335 18 female 36.850 0 0 southeast 1629.83350\n",
"1336 21 female 25.800 0 0 southwest 2007.94500\n",
"1337 61 female 29.070 0 1 northwest 29141.36030\n",
"\n",
"[1338 rows x 7 columns]"
]
},
"execution_count": 166,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 478
},
"id": "WFsV7MSOcQFg",
"outputId": "9f85fad7-7c5c-4eb9-8a84-65aab9a44b7a"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 167,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAG7CAYAAAAG+ceOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAaHElEQVR4nO3dfazWdeH/8ddBzuGEAgdoIUmOU6xDJ4kWGnqyUe6bZg7vQrKtVWs6AtMwNVke7zayGtO8WVPcsjtbstNMlEm55aK74x8RNQ4RkzyRkKbhOWbBgUPn+v3RZJ2fpofjkc8beDw2dzzX9Tmf6+V0h6fX+VzXqavVarUAAEChRlU9AAAAXolgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiHbbBumXLlmzZsqXqGQAA/A9D7bXRB2FLJf71r3+lVqtl48aNVU8BAOBl7N27N3V1da963GH7DCsAAIeHw/YZ1vr6+iTJrFmzKl4CAMDLGepPwj3DCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAULTRVQ8AXpvt27fnhRdeqHoG8DoYN25cpk2bVvUMqJxghUNYT09Pzj333AwMDFQ9BXgdHHXUUXnkkUcyceLEqqdApQQrHMImTpyYBx54wDOsR4ju7u60t7dn+fLlaW5urnoOB8G4cePEKkSwwiHPjwuPPM3NzXnHO95R9QyAg8aLrgAAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaJUH65133plTTz017373u/PpT38627dvT5J0dnZmwYIFec973pOzzjorDz74YMVLAQCoQqXB+v3vfz8PPvhgvvvd7+aXv/xlZsyYkW9/+9t55plnsmTJklx44YXp7OzMNddck2uvvTYbN26sci4AABUYXeWD33PPPbn66qvz1re+NUnS3t6eJPnmN7+Z6dOnZ8GCBUmStra2nHbaaeno6MisWbMq2wsAwMFXWbD+7W9/y/bt2/P888/nIx/5SHbu3Jm5c+fmhhtuyKZNm9La2jro+NbW1qxdu/aAHqNWq2XXrl0jORugMn19ffs/+t4GHA5qtVrq6upe9bjKgvXpp59Okvz4xz/Ot771rdRqtVx22WVpb29PX19fpkyZMuj4pqam9PT0HNBj9Pf3Z/PmzSO2GaBK27ZtS5J0d3dnYGCg4jUAI6OhoeFVj6ksWGu1WpLkoosu2h+nl156aS6++OK0tbWNyGPU19dnxowZI3IugKqNGvWflx00NzenpaWl4jUAr93WrVuHdFxlwfrGN74xSTJ+/Pj9tx133HGp1Wrp7+9Pb2/voON7enoyadKkA3qMurq6jB079jVvBShBY2Pj/o++twGHg6FcDpBU+C4Bxx57bI455phBP7LfsWNH6uvrM2/evHR1dQ06vqurK7Nnzz7YMwEAqFhlwTp69OgsWLAgd911V7Zt25adO3fmG9/4RubPn5/zzjsvO3bsSEdHR/bs2ZN169Zl3bp1WbhwYVVzAQCoSKVva3XFFVdk7969ueCCC9Lf358zzjgj7e3tOfroo7Ny5cosX748N954Y4477risWLEiM2fOrHIuAAAVqDRYGxoacv311+f6669/yX0nnXRSVq9eXcEqAABKUvmvZgUAgFciWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICiCVYAAIomWAEAKJpgBQCgaIIVAICija56ACPvqaeeSm9vb9UzgBHW3d096CNweGlqasrUqVOrnlEkwXqYeeqpp3Le+edn7549VU8BXift7e1VTwBeBw1jxuRH998vWl+GYD3M9Pb2Zu+ePXluxvuy7w0Tqp4DAAzB6N3PZ9LWX6W3t1ewvgzBepja94YJ6T9mctUzAABeMy+6AgCgaJU+w9rS0pL6+vrU1dXtv23hwoW59tpr09nZmZtvvjlPPPFEpk6dmkWLFuXss8+ucC0AAFWo/JKAH//4x5k2bdqg25555pksWbIk11xzTebPn5/169dn8eLFaW5uzqxZsypaCgBAFYq8JOChhx7K9OnTs2DBgowZMyZtbW057bTT0tHRUfU0AAAOssqfYb355puzYcOG/POf/8yZZ56ZZcuWZdOmTWltbR10XGtra9auXXtA567Vatm1a9dIzi1eX19f1RMAgGHq6+s7otqlVqsNujT0f6k0WN/97nenra0tX/va1/Lkk09m6dKlufHGG9Pb25spU6YMOrapqSk9PT0HdP7+/v5s3rx5JCcXb9u2bVVPAACGqbu7OwMDA1XPOKgaGhpe9ZhKg3XVqlX7//5tb3tbrrzyyixevDhz5swZkfPX19dnxowZI3KuQ8WoUUVe5QEADEFzc3NaWlqqnnHQbN26dUjHVX5JwH+bNm1a/v3vf2fUqFEv+dWiPT09mTRp0gGdr66uLmPHjh3BheVrbGysegIAMEyNjY1HVLsM5XKApMIXXf3hD3/IV7/61UG3/elPf0pDQ0PmzZuXrq6uQfd1dXVl9uzZB3MiAAAFqCxYJ0+enFWrVuXuu+/O3r17093dndtuuy0f+9jHcs4552THjh3p6OjInj17sm7duqxbty4LFy6sai4AABWpLFinTJmSu+++O48++mjmzp2bCy+8MO9///tz1VVXZfLkyVm5cmXuvffezJkzJzfddFNWrFiRmTNnVjUXAICKVHoN60knnZT77rvvf963evXqg7wIAIDSeEk5AABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAULRhB2tnZ2eWLVuWT37yk0mSgYGBPPzwwyM2DAAAkmEG68MPP5yLL744vb292bBhQ5Lk6aefznXXXZeOjo4RHQgAwJFtWMF61113ZcWKFbnrrrtSV1eXJHnzm9+c2267Lffcc8+IDgQA4Mg2rGD9y1/+ktNPPz1J9gdrkpxyyinZvn37yCwDAIAMM1gnTpyYnTt3vuT27u7uHH300a95FAAAvGhYwdrW1pYvfelLefzxx5Mkvb29+eUvf5mlS5fmgx/84IgOBADgyDasYL366qvT19eX+fPnZ8+ePTnllFNy0UUX5c1vfnOWLVs20hsBADiCjR7OF40fPz733ntv/vjHP+aJJ55IY2Njmpub09zcPNL7AAA4wg0rWF80c+bMzJw5c6S2AADASwwrWGfOnDno3QH+26hRo3Lsscfm9NNPz9KlSzNmzJjXNBAAgCPbsIL1hhtuyO233545c+Zkzpw5qaury29/+9ts2LAhn/nMZ9LT05P7778/yX+udwUAgOEaVrCuX78+y5Yty9lnn73/tk996lNZs2ZN1q9fn+uvvz5nnnlmLrnkEsEKAMBrMqx3CXj00UfzkY985CW3f/jDH87atWuT/Oeygeeee+61rQMA4Ig3rGCtr69PZ2fnS27/zW9+k3379iVJHnvssUyePPm1rQMA4Ig3rEsCPvrRj2bx4sV53/vel+OPPz719fV58skn8/Of/zznnHNO9u7dm4suuihLly4d8jlvuummfOc738mWLVuSJJ2dnbn55pvzxBNPZOrUqVm0aNGgSxAAADgyDCtYr7rqqrS0tGTNmjV57LHHUqvV8qY3vSnLli3LUUcdlYaGhtx66635v//7vyGdb/PmzVm9evX+z5955pksWbIk11xzTebPn5/169dn8eLFaW5uzqxZs4YzGQCAQ9Sw34d13rx5mTp1avbs2bP/tr/+9a/58pe/nIULFw45VgcGBnL99dfn05/+dG699dYkyUMPPZTp06dnwYIFSf7zq2BPO+20dHR0CFYAgCPMsIL1V7/6VT73uc+lr6/vJfedddZZB3Su++67L2PGjMn8+fP3B+umTZvS2to66LjW1tb9L+gaqlqtll27dh3Q1xzqXu7fCQBwaOjr6zui2qVWq/3P9/b/b8MK1ltuuSWf/OQnc8455+Scc87Jww8/nA0bNuQnP/lJ2tvbh3yev//977njjjvyve99b9Dtvb29mTJlyqDbmpqa0tPTc0A7+/v7s3nz5gP6mkPdtm3bqp4AAAxTd3d3BgYGqp5xUDU0NLzqMcMK1j//+c9ZtWpVRo8enbq6urzlLW/JW97ylkycODHXXXddbr/99iGd5ytf+UrOP//8zJgxI9u3bx/OlFdUX1+fGTNmjPh5SzZq1LDe+AEAKEBzc3NaWlqqnnHQbN26dUjHDStY6+rqsm/fvowePTqNjY3p6enJxIkTc/LJJ+cLX/jCkM7R2dmZDRs2ZM2aNS+5b+LEient7R10W09PTyZNmnTAO8eOHXtAX3Ooa2xsrHoCADBMjY2NR1S7DOVygGSY78N64okn5uqrr87u3bvT0tKSO++8M88991x++tOfpr6+fkjnePDBB7Nz58588IMfzNy5c3P++ecnSebOnZu3v/3t6erqGnR8V1dXZs+ePZy5AAAcwob1DOuyZcty6aWXJkmWLFmSRYsW7b8O9ZJLLhnyOT7/+c/v//zpp5/Oxz72saxevToDAwNZuXJlOjo6cvbZZ+exxx7LunXrsmrVquHMBQDgEDasYJ0+fXoeeuihJMkpp5ySNWvWpKurK8cff3xOOOGEIZ1jwoQJmTBhwv7PX/wNWccee2ySZOXKlVm+fHluvPHGHHfccVmxYkVmzpw5nLkAABzChv0+rP/t+OOPz/HHH/+azjFt2rT9v+UqSU466aRBv0wAAIAj04gEK+UZvfv5qicAAEPkz+1XJlgPU5O2/qrqCQAAI0KwHqaem/G+7HvDhFc/EACo3Ojdz3uy6RUI1sPUvjdMSP8xk6ueAQDwmvm1SAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEWrNFj/+Mc/5lOf+lTmzJmTtra2LF26NM8++2ySpLOzMwsWLMh73vOenHXWWXnwwQernAoAQEUqC9a9e/fmM5/5TN773vems7Mza9asyc6dO3PDDTfkmWeeyZIlS3LhhRems7Mz11xzTa699tps3LixqrkAAFSksmDdvXt3Lr/88ixatCgNDQ2ZNGlSPvShD+Xxxx/PQw89lOnTp2fBggUZM2ZM2tractppp6Wjo6OquQAAVGR0VQ88YcKEXHDBBfs/f+KJJ/KjH/0oZ555ZjZt2pTW1tZBx7e2tmbt2rUH9Bi1Wi27du0akb2Hir6+vqonAADD1NfXd0S1S61WS11d3aseV1mwvmjHjh0544wzsm/fvixcuDCXXXZZLr744kyZMmXQcU1NTenp6Tmgc/f392fz5s0jObd427Ztq3oCADBM3d3dGRgYqHrGQdXQ0PCqx1QerMcdd1w2btyYbdu25brrrssXv/jFETt3fX19ZsyYMWLnOxSMGuWNHwDgUNXc3JyWlpaqZxw0W7duHdJxlQdrktTV1WX69Om5/PLLc+GFF2bevHnp7e0ddExPT08mTZp0wOcdO3bsCC4tX2NjY9UTAIBhamxsPKLaZSiXAyQVvuiqs7MzZ5xxxqCnvV98dvBd73pXurq6Bh3f1dWV2bNnH9SNAABUr7JgPeGEE/LPf/4zK1asyO7du/Pcc8/ljjvuyIknnpiPf/zj2bFjRzo6OrJnz56sW7cu69aty8KFC6uaCwBARSoL1nHjxuWee+5JV1dXTj755Jx11lkZN25cbrnllkyePDkrV67Mvffemzlz5uSmm27KihUrMnPmzKrmAgBQkUqvYW1pacn3vve9l73vpJNOyurVqw/yIgAASuMl5QAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFE2wAgBQNMEKAEDRBCsAAEUTrAAAFG101QN4fYze/XzVEwCAIfLn9isTrIeZpqamNIwZk0lbf1X1FADgADSMGZOmpqaqZxRJsB5mpk6dmh/df396e3urngKMsO7u7rS3t2f58uVpbm6ueg4wwpqamjJ16tSqZxRJsB6Gpk6d6j94OIw1NzfnHe94R9UzAA4aL7oCAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAiiZYAQAoWqXBumPHjlxyySWZO3du2trasmzZsvzjH/9IkmzevDmf+MQnMmfOnJx++um55557qpwKAEBFKg3Wz372sxk/fnweffTR3H///Xn88cfzta99LX19fVm0aFFOPvnk/OIXv8jXv/71rFy5Mo888kiVcwEAqEBlwfqPf/wjJ5xwQq644oocffTROfbYY3PeeeflN7/5TX72s5+lv78/ixcvztixY/POd74zF1xwQVatWlXVXAAAKjK6qgceP358vvKVrwy67amnnsqb3vSmbNq0KS0tLTnqqKP239fa2pqOjo4DeoxarZZdu3aNyF6AqvX19e3/6HsbcDio1Wqpq6t71eMqC9b/38aNG3PvvffmzjvvzNq1azN+/PhB9zc1NaW3tzcDAwMZNWpoTwz39/dn8+bNr8dcgINu27ZtSZLu7u4MDAxUvAZgZDQ0NLzqMUUE6/r167N48eJcccUVaWtry9q1a1/2uKEU+H+rr6/PjBkzRmIiQOVe/J/15ubmtLS0VLwG4LXbunXrkI6rPFgfffTRXHXVVbn22mtz7rnnJkkmTZqUP//5z4OO6+3tTVNT05CfXU3+E7hjx44dwbUA1WlsbNz/0fc24HAw1CcjK32XgN/+9re5+uqrc9ttt+2P1SQ54YQTsmXLluzbt2//bRs3bszs2bMrWAkAQJUqC9Z9+/alvb09V155ZU499dRB982bNy/HHHNM7rzzzuzevTu///3v88Mf/jAf//jHK1oLAEBVKgvW3/3ud/nTn/6U5cuXZ9asWYP+evbZZ3PXXXfl17/+dd773vdm6dKlufzyy/OBD3ygqrkAAFSksmtYTzzxxGzZsuUVj/nBD35wkNYAAFCqSq9hBQCAVyNYAQAommAFAKBoghUAgKIJVgAAiiZYAQAommAFAKBoghUAgKIJVgAAilbZb7oCRsb27dvzwgsvVD2Dg6C7u3vQRw5/48aNy7Rp06qeAZUTrHAI6+npybnnnpuBgYGqp3AQtbe3Vz2Bg+Soo47KI488kokTJ1Y9BSolWOEQNnHixDzwwAOeYYXD1Lhx48QqRLDCIc+PCwE43HnRFQAARROsAAAUTbACAFA0wQoAQNEEKwAARROsAAAUTbACAFA0wQoAQNEEKwAARROsAAAUTbACAFA0wQoAQNEEKwAARROsAAAUTbACAFC00VUPeL309/enVqtl48aNVU8BAOBl7N27N3V1da963GEbrEP5hwcAoDp1dXVDara6Wq1WOwh7AABgWFzDCgBA0QQrAABFE6wAABRNsAIAUDTBCgBA0QQrAABFE6wAABRNsAIAULT/B1GlTcIKOyUEAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.boxplot(y= 'age', data=data)"
]
},
{
"cell_type": "code",
"execution_count": 168,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 478
},
"id": "eYcRO5pfcQLL",
"outputId": "d1100ff3-6431-4387-f648-ea66240b8a46"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 168,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAG7CAYAAAAG+ceOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmcElEQVR4nO3dfZBV9X348c9d2AdIVpCASnZNWUtYRdCkPgaNj1nEOBjWQVFpFbUdRVuRaIwRWRBQSh1jrHGMsdFOBaLFCKgjCNaUmoZWUdMsFlFkyxSKUQz4xC7seu/vj/zYZovBFZY9X5bXa4ZZ7rlfz/0441zfHM5DrlAoFAIAABJVlPUAAACwK4IVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASFr3rAfYW1555ZUoFApRXFyc9SgAAHyC5ubmyOVy8dWvfnWX67pssBYKhfAQLwCAdLW31bpssO44sjp06NCMJwEA4JPU19e3a51zWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVaAfUQ+n4/GxsbI5/NZjwLQqbpnPQAAu/b666/HnDlzYunSpdHU1BRlZWVRU1MTY8eOjUGDBmU9HsBeJ1gBErZ48eKoq6uLfv36xWWXXRaVlZWxfv36WLBgQSxatCimTZsWI0aMyHpMgL1KsAIk6vXXX4+6uroYMWJETJ48OYqLi1vfGzduXEyfPj3q6urisMMOc6QV6NKcwwqQqDlz5kS/fv12itWIiOLi4pg8eXL07ds35s6dm9GEAJ1DsAIkKJ/Px9KlS2PUqFGtsfp/L7oqLi6O2traWLJkSRQKhSzHBdirnBIAkKBt27ZFU1NTVFZW7vKiq4qKimhqaoqmpqbo0aNH1mMD7BWCFSBBpaWlUVZWFj//+c9jypQpf/Ciq9NOOy3KysqirKws65EB9hrBCpCgoqKiOOGEE+LZZ5+Nb37zmzFlypSdLrq69dZb4+mnn47TTjstcrlchtMC7F3OYQVI1Kedl7rjfeevAl2dI6wACcrn8/HCCy/EN77xjViyZEm8/PLLUVtbGxUVFbFhw4aYP39+bNq0Kb7xjW/EL37xiygUCo6yAl2WYAVI0I6Lrk4//fT48z//85g7d2489NBDrRddDR8+PC6++OJYs2ZNPPvssy66Aro0wQqQoB0XXa1fvz7OPvvsmDp1atTV1cW2bduirKys9WjqsmXLXHQFdHnOYQVIUFFRUdTU1MSCBQuiubm5dVuPHj1aY7W5uTnmz58fw4cPdzoA0KUJVoBEjR07Nt55552YPn16a7Tu0NzcHNOmTYtNmzbFxRdfnNGEAJ3DKQEAiRo0aFBMmzYt6urqYsWKFZ940dW0adNi0KBBWY8KsFcJVoCEjRgxIg477LA/eNGVWAX2B7lCF72BX319fUREDB06NONJADpGPp/f6aIrgH1Ze3vNEVaAfcSOi64A9jcuugIAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFWAfkc/no7GxMfL5fNajAHQqj2YFSNzrr78ec+bMiaVLl0ZTU1OUlZVFTU1NjB07NgYNGpT1eAB7nWAFSNjixYujrq4u+vXrF5dddllUVlbG+vXrY8GCBbFo0aKYNm1ajBgxIusxAfYqwQqQqNdffz3q6upixIgRMXny5CguLm59b9y4cTF9+vSoq6uLww47zJFWoEtzDitAoubMmRP9+vXbKVYjIoqLi2Py5MnRt2/fmDt3bkYTAnQOwQqQoHw+H0uXLo1Ro0btFKs7FBcXR21tbSxZsiQKhUInTwjQeTI9JaC6ujqKi4sjl8u1brvgggti8uTJsXz58rjzzjtj7dq10b9//7jyyivj3HPPzXBagM6zbdu2aGpqisrKyl2uq6ioiKampmhqaooePXp00nQAnSvzc1gXL1680xfy22+/HVdffXVMmjQpRo4cGS+99FKMHz8+qqqqYujQoRlNCtB5SktLo6ysLNavX7/LdRs2bIiysrIoKyvrpMkAOl+SpwQ8+eSTMWDAgBg9enSUlpbGsGHD4owzzoh58+ZlPRpApygqKoqamppYsGBBNDc3f+Ka5ubmmD9/fgwfPrzN31QBdDWZH2G9884745VXXokPP/wwzj777Ljpppvi1VdfjcGDB7dZN3jw4Fi0aNFn2nehUIitW7d25LgAnea8886Lp59+OqZMmRI33XRTdO/+v1/ZLS0tMXPmzHjnnXeitrbWdx2wTyoUCu36A3emwfqVr3wlhg0bFrNmzYr//u//juuuuy5uvfXW2LJlSxx88MFt1vbu3Ts2b978mfbf3Nwcq1at6siRATrVZZddFg899FC88MIL8fWvfz369u0bmzZtiueffz7ee++9uOyyy6KlpcV3HbDPKikp+dQ1mQbro48+2vr7P/7jP44bbrghxo8fH8ccc0yH7L+4uDgGDhzYIfsCyMIRRxwRJ510UsybNy8WL14c27Zti9LS0jjzzDPj/PPPjy9/+ctZjwiw29asWdOudZmfEvD7Kisr4+OPP46ioqLYsmVLm/c2b94cffr0+Uz7y+Vy0bNnzw6cEKDzHX300XH00UfHtGnTYtu2bVFWVuacVaBLaO93WWYXXf3nf/5n/PVf/3WbbW+++WaUlJTEqaeeGitXrmzz3sqVK+Poo4/uzBEBklJUVBQ9evQQq8B+J7Ng/cIXvhCPPvpo/PjHP47t27dHQ0ND3H333TFmzJj41re+FRs2bIh58+bFtm3bYtmyZbFs2bK44IILshoXIHP5fD4aGxsjn89nPQpAp8oVMnw8yosvvhh33nlnrF69OkpKSqK2tjYmTpwYpaWl8eKLL8aMGTPizTffjIqKirj++utj+PDh7d53fX19RIT7tgL7vNdffz3mzJkTS5cujaampigrK4uampoYO3ZsDBo0KOvxAHZbe3st02DdmwQr0BUsXrw46urqol+/fjFq1KiorKyM9evXx4IFC+Kdd96JadOmxYgRI7IeE2C3tLfXkrroCoD/9frrr0ddXV2MGDEiJk+eHMXFxa3vjRs3LqZPnx51dXVx2GGHOdIKdGlJPukKgIg5c+ZEv379dorViN/dtm/y5MnRt2/fmDt3bkYTAnQOwQqQoHw+H0uXLo1Ro0btFKs7FBcXR21tbSxZsiS66NldABEhWAGStG3btmhqaorKyspdrquoqIimpqZoamrqpMkAOp9gBUhQaWlplJWVxfr163e5bsOGDVFWVhZlZWWdNBlA5xOsAAkqKiqKmpqaWLBgQTQ3N3/imubm5pg/f34MHz7cwwSALk2wAiRq7Nix8c4778T06dN3itbm5uaYNm1abNq0KS6++OKMJgToHG5rBZCoQYMGxbRp06Kuri5WrFgRo0aNioMOOijefvvtWLBgQWzatCmmTZvmllZAlydYARI2YsSI6NatW/zwhz+MH/3oR63bDz300LjtttuipqYmw+kAOodgBUjY7z/p6qqrroqDDz44fvOb38TChQtj0qRJ8fHHH3vSFdDlCVaARO3qSVeXXXaZJ10B+w0XXQEk6v8+6Sqfz0djY2Pk83lPugL2K4IVIEG//6SrhoaGmDJlSpx00kmtv6ZMmRINDQ2edAXsF5wSAJCgHU+6evfdd2Ps2LFRUlISLS0tERHR0tISzz77bDz99NNx3nnntT7pqkePHhlPDbB3CFaABJWWlkZJSUnMmzcvImKnI6iFQiHy+Xw89thjUVJS4klXQJfmlACABBUVFcWBBx4YhUKhNVZ3PM1qx88d7/Xp08eTroAuzRFWgATl8/l4++23W1/37t07amtro7KyMtavXx/z58+Pt956KyIi3n777SgUCqIV6LIcYQVIUGNjY5sjqzt+//s/dwTqjrsHAHRVjrACJCifz0dERPfu3ePv//7v4x//8R/joYceiqampigrK4vhw4fHBRdcEJdeeml8/PHH7hIAdGmCFSBxX/7yl2Pq1KlRV1cX27Zti7KyssjlctHc3Ow0AGC/4JQAgAQVFf3u67mlpSVuvfXWaG5ujqKioujRo0drrE6dOrX1VlfCFejKHGEFSNCOMC0UCrFo0aJ4+eWXo7a2NioqKmLDhg0xf/78+M1vfhMR0RqyAF2VYAVIUFFRUZxyyimxbNmyKBQK8d5778UDDzwQLS0t0b179yguLm49b/WUU05xhBXo0pwSAJCo8ePHt54a8Pv3Y/393xcVFcVVV12V2YwAnUGwAiRq0KBBMWPGjOjWrdtOR1BzuVx069YtZsyYEYMGDcpoQoDO4ZQAgISNGDEiDjvssJg7d24888wz8fHHH0f37t2jpqYmLr74YrEK7BdyhS568776+vqIiBg6dGjGk8DetX79+vjggw+yHoNOkM/nY/v27VFaWuqc1f1EeXl5VFZWZj0G7DXt7TVHWGEftnnz5hg1alTrTeaBrqVbt26xZMmSOPDAA7MeBTIlWGEfduCBB8aCBQscYd1PNDQ0xC233BIzZsyIqqqqrMehE5SXl4tVCMEK+zx/Xbj/qaqqiiOOOCLrMQA6jbsEAACQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAElLJlhvv/32qK6ujoiIf//3f4/q6uoYOnRom1+LFi3KeEoAADpb96wHiIhYtWpVLFy4sM22ioqKeO655zKaCACAVGR+hDWfz8eUKVNi3LhxWY8CAECCMj/C+sgjj0RpaWmMHDkyfvCDH7Ru/+ijj+Kaa66JFStWRElJSVx++eUxbty4yOVy7d53oVCIrVu37oWpATpfU1NT60/fbUBXUCgU2tV2mQbrpk2b4p577omHH364zfbPf/7zMWjQoLj00kvjrrvuihdeeCEmTJgQ5eXlMXr06Hbvv7m5OVatWtXRYwNkYt26dRER0dDQEPl8PuNpADpGSUnJp67JNFhnzpwZ5513XgwcODDWr1/fuv3II49sE7Enn3xyXHjhhfH4449/pmAtLi6OgQMHdujMAFkpKvrdWVxVVVWtF6kC7MvWrFnTrnWZBevy5cvjlVdeiaeeeqpd6ysqKuKZZ575TJ+Ry+WiZ8+euzMeQHLKyspaf/puA7qC9p7qmVmwPvHEE/Huu+/G6aefHhG/O4chIuKEE06I733ve7F169a4+OKLW9evXbs2Dj300ExmBQAgO5kF60033RQTJkxoff3WW2/FmDFjYuHChbFy5cqYMmVKfOlLX4oTTjghXnjhhfjZz34Ws2bNympcAAAyklmw9urVK3r16tX6uqWlJSIiDjnkkDjkkEPi5ptvjunTp8fGjRujb9++cfPNN8fw4cOzGhcAgIxkflurHSorK2P16tWtr8eMGRNjxozJcCIAAFKQ+YMDAABgVwQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0pIJ1ttvvz2qq6tbXy9fvjxGjx4df/InfxLnnHNOPPHEExlOBwBAVrpnPUBExKpVq2LhwoWtr99+++24+uqrY9KkSTFy5Mh46aWXYvz48VFVVRVDhw7NcFIAADpb5kdY8/l8TJkyJcaNG9e67cknn4wBAwbE6NGjo7S0NIYNGxZnnHFGzJs3L7tBAQDIROZHWB955JEoLS2NkSNHxg9+8IOIiHj11Vdj8ODBbdYNHjw4Fi1a9Jn2XSgUYuvWrR01KkCmmpqaWn/6bgO6gkKhELlc7lPXZRqsmzZtinvuuScefvjhNtu3bNkSBx98cJttvXv3js2bN3+m/Tc3N8eqVav2eE6AFKxbty4iIhoaGiKfz2c8DUDHKCkp+dQ1mQbrzJkz47zzzouBAwfG+vXrO3z/xcXFMXDgwA7fL0AWiop+dxZXVVVVm4tUAfZVa9asade6zIJ1+fLl8corr8RTTz2103sHHnhgbNmypc22zZs3R58+fT7TZ+RyuejZs+eejAmQjLKystafvtuArqA9pwNEZBisTzzxRLz77rtx+umnR8TvzmGIiDjhhBPi8ssv3ylkV65cGUcffXSnzwkAQLYyC9abbropJkyY0Pr6rbfeijFjxsTChQsjn8/H/fffH/PmzYtzzz03/u3f/i2WLVsWjz76aFbjAgCQkcyCtVevXtGrV6/W1y0tLRERccghh0RExP333x8zZsyIW2+9NSoqKuKOO+6Iww8/PJNZAQDITua3tdqhsrIyVq9e3fr6uOOOa/MwAQAA9k+ZPzgAAAB2RbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASeve3oV/+7d/G9dee21ERHz/+9/f5dpvf/vbezYVAAD8f+0O1qeffro1WJ966qk/uC6Xy7U7WF977bWYOXNmrFy5MkpLS+P444+PSZMmxdq1a+OSSy6JkpKSNuv/5m/+Js4+++z2jgwAQBfQ7mBdvHhx6++fe+65Pf7g7du3x+WXXx5jx46NBx54ID788MOYMGFCTJ06NS655JKoqKjokM8BAGDf1u5g/SS//e1vo6mpaaftX/ziFz/1n21sbIyJEydGbW1tdO/ePfr06RM1NTUxe/bsPRkJAIAuZreC9ZlnnompU6fGli1b2mwvFAqRy+Vi1apVn7qPXr16xfnnn9/6eu3atTF//vzWv/L/6KOP4pprrokVK1ZESUlJXH755TFu3LjI5XLtnrNQKMTWrVvbvR4gZTsOEDQ1NfluA7qEHe34aXYrWGfNmhU1NTVx5plnRo8ePXZnF602bNgQZ511VrS0tMQFF1wQ1157bbz22msxaNCguPTSS+Ouu+6KF154ISZMmBDl5eUxevTodu+7ubm5XfEMsC9Yt25dREQ0NDREPp/PeBqAjvF/r1n6JLlCoVD4rDs+5phj4sUXX4yioo65K1ahUIh169ZFXV1d9OvXL+68886d1txxxx3xyiuvxNy5c9u1z/r6+igUCjFw4MAOmREga6tXr44rrrgifvKTn0R1dXXW4wDssTVr1kQul4uhQ4fuct1uHWH9+te/Hr/+9a/jK1/5yu784zvJ5XIxYMCAmDhxYlx44YUxadKk6NOnT5s1FRUV8cwzz3zm/fbs2bNDZtyXbNy4cafTNYB938aNG1t/lpWVZTwN0NF69+4d/fv3z3qMTtXeUz13K1jr6uri0ksvjSFDhsQXv/jFnT7sL//yLz91H8uXL4+pU6fGokWLWo/U7vi5bNmyaGxsjIsvvrh1/dq1a+PQQw/dnXH3Kxs3boza886L7du2ZT0KsJfccsstWY8A7AUlpaUx//HH97tobY/dCtbbbrst3njjjXj33Xd3+lN+LpdrV7AOGTIkPvzww7jjjjvi2muvjcbGxrjnnnvi2GOPjfLy8pg6dWp86UtfihNOOCFeeOGF+NnPfhazZs3anXH3K1u2bInt27bFbweeFC09emU9DgDQDt0b34s+a/41tmzZIlg/wW4F6z/90z/F7Nmz49hjj93tDy4vL48HH3wwZsyYESeeeGL07NkzTjzxxLjtttvi4IMPjptvvjmmT58eGzdujL59+8bNN98cw4cP3+3P29+09OgVzZ//QtZjAADssd0K1j59+sRRRx21xx9eXV0dDz/88Ce+N2bMmBgzZswefwYAAPu23brMf+LEiXHXXXdFY2NjR88DAABt7NYR1r/7u7+LDRs2xD/8wz9E7969d7ro6he/+EWHDAcAALsVrDU1NR09BwAAfKLdCtb23AUAAAA6wm4Fa0TEI488EkuXLo3/+Z//idLS0ujfv3+MHDkyvvnNb3bkfAAA7Od266Kru+66K2677bYoKSmJ0047LU488cT4+OOP48Ybb4x77723o2cEAGA/tltHWBcuXBg//vGP42tf+1qb7c8//3xMnjw5rrnmmg4ZDgAAdusI6/vvvx/HH3/8TtuHDRsW77333h4PBQAAO+xWsJ5yyimxfPnynbavWLEiTjrppD0eCgAAdmj3KQGPPvpo6++PPPLI+N73vhennnpqVFdXR1FRUbzxxhvx85//PK644oq9MigAAPundgfrlClTdtr22GOP7bRt5syZcckll+zZVAAA8P+1O1hfe+21vTkHAAB8ot06hxUAADqLYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApHXPegD2ju6N72U9AgDQTv6/vWuZButrr70WM2fOjJUrV0ZpaWkcf/zxMWnSpOjXr18sX7487rzzzli7dm30798/rrzyyjj33HOzHHef0mfNv2Y9AgBAh8gsWLdv3x6XX355jB07Nh544IH48MMPY8KECTF16tSYMmVKXH311TFp0qQYOXJkvPTSSzF+/PioqqqKoUOHZjXyPuW3A0+Klh69sh4DAGiH7o3vOdi0C5kFa2NjY0ycODFqa2uje/fu0adPn6ipqYnZs2fHk08+GQMGDIjRo0dHRMSwYcPijDPOiHnz5gnWdmrp0SuaP/+FrMcAANhjmQVrr1694vzzz299vXbt2pg/f36cffbZ8eqrr8bgwYPbrB88eHAsWrToM31GoVCIrVu3dsi8+4qmpqasRwAAdlNTU9N+1S6FQiFyudynrsv8oqsNGzbEWWedFS0tLXHBBRfEtddeG3/xF38RBx98cJt1vXv3js2bN3+mfTc3N8eqVas6ctzkrVu3LusRAIDd1NDQEPl8PusxOlVJScmnrsk8WCsqKqK+vj7WrVsXdXV1ceONN3bYvouLi2PgwIEdtr99QVGRO5UBwL6qqqoqqqursx6j06xZs6Zd6zIP1oiIXC4XAwYMiIkTJ8aFF14Yp556amzZsqXNms2bN0efPn0+83579uzZgZOmr6ysLOsRAIDdVFZWtl+1S3tOB4jI8MEBy5cvj7POOqvNYe8dRwePOuqoWLlyZZv1K1eujKOPPrpTZwQAIHuZBeuQIUPiww8/jDvuuCMaGxvjt7/9bdxzzz1x7LHHxkUXXRQbNmyIefPmxbZt22LZsmWxbNmyuOCCC7IaFwCAjGQWrOXl5fHggw/GypUr48QTT4xzzjknysvL4/vf/3584QtfiPvvvz9mz54dxxxzTNx+++1xxx13xOGHH57VuAAAZCTTc1irq6vj4Ycf/sT3jjvuuFi4cGEnTwQAQGpcUg4AQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkrXvWA7B3dG98L+sRAIB28v/tXROsXUzv3r2jpLQ0+qz516xHAQA+g5LS0ujdu3fWYyRJsHYx/fv3j/mPPx5btmzJehSggzU0NMQtt9wSM2bMiKqqqqzHATpY7969o3///lmPkSTB2gX179/ff/DQhVVVVcURRxyR9RgAncZFVwAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQtExva7Vhw4a4/fbbY8WKFdGtW7c45ZRT4uabb473338/zjzzzCgpKWmz/rrrrosrrrgio2kBAMhCpsF61VVXxZAhQ+K5556LDz74IK655pqYNWtWjB8/PiIi6uvrsxwPAIAEZHZKwPvvvx9DhgyJ66+/Pj73uc/FIYccErW1tbFixYqsRgIAIEGZHWE94IADYubMmW22bdy4MQ466KDW1zfeeGP88pe/jJaWljj//PPj2muvjeLi4nZ/RqFQiK1bt3bYzABZampqav3puw3oCgqFQuRyuU9dl8yjWevr62P27Nlx3333RUlJSXz1q1+NmpqauO2222LVqlXxV3/1V9G9e/eYMGFCu/fZ3Nwcq1at2otTA3SedevWRUREQ0ND5PP5jKcB6Bj/95qlT5JEsL700ksxfvz4uP7662PYsGEREfHII4+0vn/UUUfFlVdeGffff/9nCtbi4uIYOHBgh88LkIWiot+dxVVVVRXV1dUZTwOw59asWdOudZkH63PPPRff+c53YvLkyTFq1Kg/uK6ioiI2bdrU7kPHERG5XC569uzZQZMCZKusrKz1p+82oCtob9Nleh/Wl19+Ob773e/G3Xff3SZWly9fHvfdd1+btWvXro2Kiop2/4sBANA1ZBasLS0tccstt8QNN9wQJ598cpv3ysvL4957742FCxdGc3Nz1NfXx09+8pO46KKLMpoWAICsZHZKwK9+9at48803Y8aMGTFjxow27y1evDjuuuuu+OEPfxh1dXVRXl4ef/ZnfxaXXnppRtMCAJCVzIL12GOPjdWrV//B9ysqKqKmpqYTJwIAIEWZnsMKAACfRrACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAASROsAAAkLdNg3bBhQ1xzzTVxwgknxLBhw+Kmm26K999/PyIiVq1aFX/6p38axxxzTAwfPjwefPDBLEcFACAjmQbrVVddFQcccEA899xz8fjjj8cbb7wRs2bNiqamprjyyivjxBNPjOeffz7uuuuuuP/++2PJkiVZjgsAQAYyC9b3338/hgwZEtdff3187nOfi0MOOSRqa2tjxYoV8c///M/R3Nwc48ePj549e8aRRx4Z559/fjz66KNZjQsAQEa6Z/XBBxxwQMycObPNto0bN8ZBBx0Ur776alRXV0e3bt1a3xs8eHDMmzfvM31GoVCIrVu3dsi8AFlrampq/em7DegKCoVC5HK5T12XWbD+X/X19TF79uy47777YtGiRXHAAQe0eb93796xZcuWyOfzUVTUvgPDzc3NsWrVqr0xLkCnW7duXURENDQ0RD6fz3gagI5RUlLyqWuSCNaXXnopxo8fH9dff30MGzYsFi1a9Inr2lPgv6+4uDgGDhzYESMCZG7HH9arqqqiuro642kA9tyaNWvatS7zYH3uuefiO9/5TkyePDlGjRoVERF9+vSJ//qv/2qzbsuWLdG7d+92H12N+F3g9uzZswOnBchOWVlZ60/fbUBX0N6DkZneJeDll1+O7373u3H33Xe3xmpExJAhQ2L16tXR0tLSuq2+vj6OPvroDKYEACBLmQVrS0tL3HLLLXHDDTfEySef3Oa9U089NT7/+c/HfffdF42NjfEf//Ef8dhjj8VFF12U0bQAAGQls2D91a9+FW+++WbMmDEjhg4d2ubXO++8Ez/60Y/il7/8ZRx//PFx3XXXxcSJE+O0007LalwAADKS2Tmsxx57bKxevXqXa37605920jQAAKQq03NYAQDg0whWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACS1j3rAYA9s379+vjggw+yHoNO0NDQ0OYnXV95eXlUVlZmPQZkTrDCPmzz5s0xatSoyOfzWY9CJ7rllluyHoFO0q1bt1iyZEkceOCBWY8CmRKssA878MADY8GCBY6wQhdVXl4uViEEK+zz/HUhAF2di64AAEiaYAUAIGmCFQCApGUerM8//3wMGzYsJk6c2Gb7448/HocffngMHTq0za9f//rXGU0KAEAWMr3o6oEHHojHHnss/uiP/ugT3z/uuOPi4Ycf7uSpAABISaZHWEtLS3cZrAAAkOkR1ksuuWSX72/cuDEuu+yyWLlyZRxwwAFx7bXXxre+9a12779QKMTWrVv3dEwAAPaCQqEQuVzuU9clex/WPn36xIABA+Lb3/52DBw4MJYuXRo33nhjHHTQQfG1r32tXftobm6OVatW7eVJAQDYXSUlJZ+6JtlgPe200+K0005rfX3OOefE0qVL4/HHH293sBYXF8fAgQP30oQAAOyJNWvWtGtdssH6SSoqKmLlypXtXp/L5aJnz557cSIAAHZXe04HiEjgtlZ/yE9/+tN4+umn22x7880349BDD81oIgAAspBssG7fvj2mT58e9fX10dzcHE899VT8y7/8S1x44YVZjwYAQCfK9JSAoUOHRkRES0tLREQ8++yzERFRX18fl1xySXz00UcxYcKEeOedd6KysjLuvffeGDJkSGbzAgDQ+XKFQqGQ9RB7Q319fUT8bxQDAJCW9vZasqcEAABAxD52l4DPorm5OQqFQmu5AwCQlu3bt+/bDw7YU+29TQIAANnI5XLtarYuew4rAABdg3NYAQBImmAFACBpghUAgKQJVgAAkiZYAQBImmAFACBpghUAgKQJVgAAkvb/APJQ7I1y85msAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.boxplot(y= 'bmi', data=data)"
]
},
{
"cell_type": "code",
"execution_count": 169,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ByttuoM8l0pG",
"outputId": "ae660594-d84c-452d-dd87-95242f8b09c7"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"les results sont 47.290000000000006 13.7\n"
]
}
],
"source": [
"## gestion de bmi\n",
"\n",
"\n",
"Q1 = data['bmi'].quantile(0.25)\n",
"Q3 = data['bmi'].quantile(0.75)\n",
"IQR = Q3 - Q1\n",
"IQR\n",
"\n",
"k = 1.5\n",
"lower_limit = Q1 - k * IQR\n",
"upper_limit = Q3 + k * IQR\n",
"print ('les results sont', upper_limit, lower_limit)"
]
},
{
"cell_type": "code",
"execution_count": 170,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Nmm4dNhow07p",
"outputId": "320ced8b-50e5-4827-edae-2fca0d96aee2"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Nombre d'outliers dans la colonne 'bmi': 9\n"
]
}
],
"source": [
"\n",
"outliers = data[(data['bmi'] < lower_limit) | (data['bmi'] > upper_limit)]\n",
"num_outliers = len(outliers)\n",
"print(\"Nombre d'outliers dans la colonne 'bmi':\", num_outliers)"
]
},
{
"cell_type": "code",
"execution_count": 171,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "zq8_ZgK4w01k",
"outputId": "a9fa2044-a360-47ac-8aec-19d1c7f95247"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Nombre d'outliers dans la colonne 'bmi': 9\n",
"Nombre d'outliers : 9\n"
]
}
],
"source": [
"outliers = data[(data['bmi'] < lower_limit) | (data['bmi'] > upper_limit)]\n",
"num_outliers = len(outliers)\n",
"print(\"Nombre d'outliers dans la colonne 'bmi':\", num_outliers)\n",
"\n",
"# Sélectionner les outliers contigus dans la première plage\n",
"outliers = data[(data['bmi'] < lower_limit) | (data['bmi'] > upper_limit)]\n",
"len(outliers)\n",
"\n",
"\n",
"# Afficher la taille des deux groupes\n",
"print(\"Nombre d'outliers :\", len(outliers))\n",
"\n",
"\n",
"# Supprimer les outliers non contigus du DataFrame principal\n",
"data.drop(outliers.index, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 172,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 479
},
"id": "kFrC8ql1w0rc",
"outputId": "193e7c21-9858-42e1-938d-5b1b20f4d3f9"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 172,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAG8CAYAAAAb/Pc2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcYUlEQVR4nO3df2xV9f348ddF2mK1UJhTsbjRpLGKoFERkTl/zCBxBicGf+0HOMymyAaiDhVRXEQJI4qOGcfc/GOQqUFRlIjTjY35o5vBH7M1lYh0JDKMP6CiQqVd7/cPvzafTieXcul5Ux+PpLncc98590ViLk9Pzzk3l8/n8wEAAInqlfUAAADwRQQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACStd9YD7CkvvfRS5PP5KCkpyXoUAAA+R2tra+RyuTjmmGO+cF2PDdZ8Ph++EwEAIF2FtlqPDdZPj6wOGzYs40kAAPg89fX1Ba1zDisAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSemc9ALB73nzzzfjggw+yHgPYAyoqKmLQoEFZjwGZE6ywF9uyZUucc8450d7envUowB6wzz77xJNPPhn9+/fPehTIlGCFvVj//v3jkUcecYT1S6KpqSlmzZoVc+bMierq6qzHoRtUVFSIVQjBCns9vy788qmuro4jjjgi6zEAuo2LrgAASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJKWTLDeeuutUVtbGxER//jHP6K2tjaGDRvW6WflypUZTwkAQHfrnfUAERGNjY2xfPnyTtuqqqpi1apVGU0EAEAqMg/W9vb2mD17dlx88cVxxx13FHXf+Xw+tm3bVtR9AmSlpaWl49FnG9AT5PP5yOVyO12XebDef//9UVZWFmPHju0UrB999FFMmTIl1qxZE6WlpTFp0qS4+OKLC/pLfaq1tTUaGxv3wNQA3W/Dhg0REdHU1BTt7e0ZTwNQHKWlpTtdk2mwvvvuu7Fw4cJYvHhxp+37779/HHbYYTFx4sRYsGBBPP/88zFt2rSoqKiI8ePHF7z/kpKSqKmpKfbYAJno1euTyw6qq6s7zvkH2JutW7euoHWZBuvcuXPj3HPPjZqamnjzzTc7th955JGdIvakk06KCy+8MJYtW7ZLwZrL5aK8vLyoMwNkpU+fPh2PPtuAnqDQ35xndpeAurq6eOmll2LKlCkFra+qqoq33357D08FAEBqMjvC+uijj8Z7770Xp512WkR8ctJtRMQJJ5wQ1113XWzbti2++93vdqxfv359HHrooZnMCgBAdjIL1muvvTamTZvW8fytt96KCy64IJYvXx4NDQ0xe/bs+NrXvhYnnHBCPP/88/HQQw/FvHnzshoXAICMZBas/fr1i379+nU8b2tri4iIgw8+OA4++OCYOXNm3HzzzbFp06Y44IADYubMmXHGGWdkNS4AABnJ/LZWnxo0aFCsXbu24/kFF1wQF1xwQYYTAQCQgmS+mhUAAD6PYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApCUTrLfeemvU1tZ2PK+rq4vx48fHscceG2eddVY8+uijGU4HAEBWemc9QEREY2NjLF++vOP522+/HZdffnlcf/31MXbs2HjhhRdi8uTJUV1dHcOGDctwUgAAulvmR1jb29tj9uzZcfHFF3dse+yxx2Lw4MExfvz4KCsri1GjRsW3vvWtWLp0aXaDAgCQicyPsN5///1RVlYWY8eOjTvuuCMiIl599dUYMmRIp3VDhgyJlStX7tK+8/l8bNu2rVijAmSqpaWl49FnG9AT5PP5yOVyO12XabC+++67sXDhwli8eHGn7c3NzXHQQQd12lZZWRlbtmzZpf23trZGY2Pjbs8JkIINGzZERERTU1O0t7dnPA1AcZSWlu50TabBOnfu3Dj33HOjpqYm3nzzzaLvv6SkJGpqaoq+X4As9Or1yVlc1dXVnS5SBdhbrVu3rqB1mQVrXV1dvPTSS7FixYrPvNa/f/9obm7utG3Lli0xYMCAXXqPXC4X5eXluzMmQDL69OnT8eizDegJCjkdICLDYH300Ufjvffei9NOOy0iPjmHISLihBNOiEmTJn0mZBsaGuLoo4/u9jkBAMhWZsF67bXXxrRp0zqev/XWW3HBBRfE8uXLo729PRYtWhRLly6Ns88+O/7+97/H6tWr44EHHshqXAAAMpJZsPbr1y/69evX8bytrS0iIg4++OCIiFi0aFHMmTMnfv7zn0dVVVXMnz8/Dj/88ExmBQAgO5nf1upTgwYNirVr13Y8P/744zt9mQAAAF9OmX9xAAAAfBHBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACStd5Zv/tprr8XcuXOjoaEhysrKYsSIEXH99dfH+vXrY8KECVFaWtpp/S9+8Ys488wzM5oWAIAsZHaEdceOHTFp0qQYMWJE1NXVxYoVK+K9996Lm266KSIiqqqqor6+vtOPWAUA+PLJ7Ajr9u3bY/r06TFu3Ljo3bt3DBgwIEaPHh1Lliwp2nvk8/nYtm1b0fYHkKWWlpaOR59tQE+Qz+cjl8vtdF1mwdqvX78477zzOp6vX78+Hn744Y6jqB999FFMmTIl1qxZE6WlpTFp0qS4+OKLC/pLfaq1tTUaGxuLPjtAFjZs2BAREU1NTdHe3p7xNADF8d+ngH6eTM9hjYjYuHFjjBkzJtra2uL888+PqVOnxmuvvRaHHXZYTJw4MRYsWBDPP/98TJs2LSoqKmL8+PEF77ukpCRqamr24PQA3adXr0/O4qquro7a2tqMpwHYfevWrStoXebB+um5qhs2bIgbb7wxZsyYEbfddlssXry4Y81JJ50UF154YSxbtmyXgjWXy0V5efmeGBug2/Xp06fj0Wcb0BMU+pvzJG5rlcvlYvDgwTF9+vRYsWJFbN68+TNrqqqq4u23385gOgAAspRZsNbV1cWYMWM6nYf16a+7Vq9eHX/4wx86rV+/fn0ceuih3TojAADZyyxYhw4dGh9++GHMnz8/tm/fHps3b46FCxfG8OHDo6KiIubNmxfPPPNMtLa2xrPPPhsPPfRQXHTRRVmNCwBARjI7h7WioiLuvffemDNnTowcOTLKy8tj5MiRccstt8RBBx0UM2fOjJtvvjk2bdoUBxxwQMycOTPOOOOMrMbdq2zatCmam5uzHgMosqampk6PQM9SWVkZAwcOzHqMJOXy+Xw+6yH2hPr6+oiIGDZsWMaTdK9NmzbFuHPPjR0ff5z1KADALigtK4uHly37UkVrob2W+V0CKK7m5ubY8fHHsbnmG9G2b7+sxwEACtB7+/sxYN2z0dzc/KUK1kIJ1h6qbd9+0br/V7IeAwBgtyVxWysAAPhfBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJK13oQt/+ctfxtSpUyMi4vbbb//CtVdeeeXuTQUAAP9fwcH6+OOPdwTrihUr/ue6XC4nWAEAKJqCg/WJJ57o+POqVav2yDAAAPDfCg7Wz7N58+ZoaWn5zPZDDjlkd3YLAAAduhSsf/zjH+Omm26K5ubmTtvz+XzkcrlobGwsxmwAANC1YJ03b16MHj06Tj/99Nh3332LPRMAAHToUrC+//77cdNNN0WvXu6KBQDAntWl4vzmN78Zr7zySrFnAQCAz+jSEdYbb7wxJk6cGEOHDo1DDjkkcrlcp9d/8pOfFGU4AADoUrDecsst8frrr8d7770Xffr06fRaLpcTrAAAFE2XgvXPf/5zLFmyJIYPH17seQAAoJMuncM6YMCAOOqoo4o9CwAAfEaXgnX69OmxYMGC2L59e7HnAQCATrp0SsBvf/vb2LhxY/z+97+PysrKz1x09cwzzxRlOAAA6FKwjh49uthzAADA5+pSsLoLAAAA3aVLwRoRcf/998dTTz0V//73v6OsrCwGDhwYY8eOjW9/+9vFnA8AgC+5Ll10tWDBgrjllluitLQ0Tj311Bg5cmT85z//iRkzZsRdd91V7BkBAPgS69IR1uXLl8dvfvObOPHEEzttf/rpp+OGG26IKVOmFGU4AADo0hHWrVu3xogRIz6zfdSoUfH+++/v9lAAAPCpLgXrySefHHV1dZ/ZvmbNmvjGN76x20MBAMCnCj4l4IEHHuj485FHHhnXXXddnHLKKVFbWxu9evWK119/Pf7yl7/EJZdcskcGZdf03u5INwDsLfy7/cUKDtbZs2d/ZtuDDz74mW1z586NCRMmFLTP1157LebOnRsNDQ1RVlYWI0aMiOuvvz6++tWvRl1dXdx2222xfv36GDhwYFx66aVx9tlnFzrul96Adc9mPQIAQFEUHKyvvfZaUd94x44dMWnSpPje974X99xzT3z44Ycxbdq0uOmmm2L27Nlx+eWXx/XXXx9jx46NF154ISZPnhzV1dUxbNiwos7RU22u+Ua07dsv6zEAgAL03v6+g01foMv3Yd1d27dvj+nTp8e4ceOid+/eMWDAgBg9enQsWbIkHnvssRg8eHCMHz8+Ij65mOtb3/pWLF26VLAWqG3fftG6/1eyHgMAYLdlFqz9+vWL8847r+P5+vXr4+GHH44zzzwzXn311RgyZEin9UOGDImVK1fu0nvk8/nYtm1bUebdW7S0tGQ9AgDQRS0tLV+qdsnn85HL5Xa6LrNg/dTGjRtjzJgx0dbWFueff35MnTo1fvSjH8VBBx3UaV1lZWVs2bJll/bd2toajY2NxRw3eRs2bMh6BACgi5qamqK9vT3rMbpVaWnpTtdkHqxVVVVRX18fGzZsiBtvvDFmzJhRtH2XlJRETU1N0fa3N+jVq0t3KgMAElBdXR21tbVZj9Ft1q1bV9C6zIM1IiKXy8XgwYNj+vTpceGFF8Ypp5wSzc3NndZs2bIlBgwYsMv7LS8vL+Kk6evTp0/WIwAAXdSnT58vVbsUcjpARBe/OKAY6urqYsyYMZ0Oe396dPCoo46KhoaGTusbGhri6KOP7tYZAQDIXmbBOnTo0Pjwww9j/vz5sX379ti8eXMsXLgwhg8fHhdddFFs3Lgxli5dGh9//HGsXr06Vq9eHeeff35W4wIAkJHMgrWioiLuvffeaGhoiJEjR8ZZZ50VFRUVcfvtt8dXvvKVWLRoUSxZsiSOO+64uPXWW2P+/Plx+OGHZzUuAAAZyfQc1tra2li8ePHnvnb88cfH8uXLu3kiAABS45JyAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGmCFQCApAlWAACSJlgBAEiaYAUAIGm9sx6APaP39vezHgEAKJB/t7+YYO1hKisro7SsLAasezbrUQCAXVBaVhaVlZVZj5EkwdrDDBw4MB5etiyam5uzHgUosqamppg1a1bMmTMnqqursx4HKLLKysoYOHBg1mMkSbD2QAMHDvQfPPRg1dXVccQRR2Q9BkC3cdEVAABJE6wAACRNsAIAkDTBCgBA0gQrAABJE6wAACRNsAIAkDTBCgBA0gQrAABJy/SbrjZu3Bi33nprrFmzJvbZZ584+eSTY+bMmbF169Y4/fTTo7S0tNP6K664Ii655JKMpgUAIAuZButll10WQ4cOjVWrVsUHH3wQU6ZMiXnz5sXkyZMjIqK+vj7L8QAASEBmwbp169YYOnRoXHXVVbHffvvFfvvtF+PGjYvFixcX7T3y+Xxs27ataPsDyFJLS0vHo882oCfI5/ORy+V2ui6zYO3bt2/MnTu307ZNmzbFgQce2PF8xowZ8dxzz0VbW1ucd955MXXq1CgpKSn4PVpbW6OxsbFoMwNkacOGDRER0dTUFO3t7RlPA1Ac/30K6OfJ9JSA/6u+vj6WLFkSd999d5SWlsYxxxwTo0ePjltuuSUaGxvjpz/9afTu3TumTZtW8D5LSkqipqZmD04N0H169frkOtnq6uqora3NeBqA3bdu3bqC1iURrC+88EJMnjw5rrrqqhg1alRERNx///0drx911FFx6aWXxqJFi3YpWHO5XJSXlxd9XoAs9OnTp+PRZxvQExRyOkBEAre1WrVqVfz4xz+OmTNnxoQJE/7nuqqqqnj33Xcjn89343QAAGQt02B98cUX45prrok777wzzjnnnI7tdXV1cffdd3dau379+qiqqiq4xAEA6BkyC9a2traYNWtWXH311XHSSSd1eq2ioiLuuuuuWL58ebS2tkZ9fX387ne/i4suuiijaQEAyEpm57C+/PLL8cYbb8ScOXNizpw5nV574oknYsGCBfGrX/0qbrzxxqioqIgf/OAHMXHixIymBQAgK5kF6/Dhw2Pt2rX/8/WqqqoYPXp0N04EAECKMr/oCgAAvohgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkCVYAAJImWAEASJpgBQAgaYIVAICkZRqsGzdujClTpsQJJ5wQo0aNimuvvTa2bt0aERGNjY3x/e9/P4477rg444wz4t57781yVAAAMpJpsF522WXRt2/fWLVqVSxbtixef/31mDdvXrS0tMSll14aI0eOjKeffjoWLFgQixYtiieffDLLcQEAyEBmwbp169YYOnRoXHXVVbHffvvFwQcfHOPGjYs1a9bEX//612htbY3JkydHeXl5HHnkkXHeeefFAw88kNW4AABkpHdWb9y3b9+YO3dup22bNm2KAw88MF599dWora2NffbZp+O1IUOGxNKlS3fpPfL5fGzbtq0o8wJkraWlpePRZxvQE+Tz+cjlcjtdl1mw/rf6+vpYsmRJ3H333bFy5cro27dvp9crKyujubk52tvbo1evwg4Mt7a2RmNj454YF6DbbdiwISIimpqaor29PeNpAIqjtLR0p2uSCNYXXnghJk+eHFdddVWMGjUqVq5c+bnrCinw/6ukpCRqamqKMSJA5j79n/Xq6uqora3NeBqA3bdu3bqC1mUerKtWrYqf/exnccMNN8Q555wTEREDBgyIf/3rX53WNTc3R2VlZcFHVyM+Cdzy8vIiTguQnT59+nQ8+mwDeoJCD0ZmepeAF198Ma655pq48847O2I1ImLo0KGxdu3aaGtr69hWX18fRx99dAZTAgCQpcyCta2tLWbNmhVXX311nHTSSZ1eO+WUU2L//fePu+++O7Zv3x7//Oc/48EHH4yLLrooo2kBAMhKZsH68ssvxxtvvBFz5syJYcOGdfp555134te//nU899xzMWLEiLjiiiti+vTpceqpp2Y1LgAAGcnsHNbhw4fH2rVrv3DNfffd103TAACQqkzPYQUAgJ0RrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJK131gMAu+fNN9+MDz74IOsx6AZNTU2dHun5KioqYtCgQVmPAZkTrLAX27JlS5xzzjnR3t6e9Sh0o1mzZmU9At1kn332iSeffDL69++f9SiQKcEKe7H+/fvHI4884ggr9FAVFRViFUKwwl7PrwsB6OlcdAUAQNIEKwAASROsAAAkTbACAJA0wQoAQNIEKwAAScs8WJ9++ukYNWpUTJ8+vdP2ZcuWxeGHHx7Dhg3r9PPKK69kNCkAAFnI9D6s99xzTzz44IPx9a9//XNfP/7442Px4sXdPBUAACnJ9AhrWVnZFwYrAABkeoR1woQJX/j6pk2b4oc//GE0NDRE3759Y+rUqfGd73yn4P3n8/nYtm3b7o4JAMAekM/nI5fL7XRdsl/NOmDAgBg8eHBceeWVUVNTE0899VTMmDEjDjzwwDjxxBML2kdra2s0Njbu4UkBAOiq0tLSna5JNlhPPfXUOPXUUzuen3XWWfHUU0/FsmXLCg7WkpKSqKmp2UMTAgCwO9atW1fQumSD9fNUVVVFQ0NDwetzuVyUl5fvwYkAAOiqQk4HiEjgtlb/y3333RePP/54p21vvPFGHHrooRlNBABAFpIN1h07dsTNN98c9fX10draGitWrIi//e1vceGFF2Y9GgAA3SjTUwKGDRsWERFtbW0REfGnP/0pIiLq6+tjwoQJ8dFHH8W0adPinXfeiUGDBsVdd90VQ4cOzWxeAAC6Xy6fz+ezHmJPePHFFyOfzxd05RkAAN1vx44dkcvl4thjj/3CdXvVRVe7otCTeAEAyEYulyuo2XrsEVYAAHqGZC+6AgCACMEKAEDiBCsAAEkTrAAAJE2wAgCQNMEKAEDSBCsAAEkTrAAAJE2wAgCQtP8HGq36O/TF2vIAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.boxplot(y='bmi', data=data)"
]
},
{
"cell_type": "code",
"execution_count": 173,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 478
},
"id": "gTsq6l9rw0lJ",
"outputId": "bc13a972-afea-4669-b85a-5185d5b79cf5"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 173,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAG7CAYAAAASbFlvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmO0lEQVR4nO3de5jXdZ3//8dwGkBbWtvYlJNrnrJQQGiGFU+AmG0uVJdcGtpBNFgSNTMs10OJmhSG5iHlVFkeUEkLL1H3kmUzS1fUlBBEhMsGC48oZwaHz++Pfs31dRWhkZcD4+321/A+vHjOxz+8z3tenw9VlUqlEgAAYLtr1dwDAABASyW2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNjeAT399NN5+umnm3sMAAC2YFt7rc17MAt/p7Vr16ZSqWT+/PnNPQoAAG+jvr4+VVVVW73Ok20AACjEk+0dUNu2bZMkPXv2bOZJAAB4O9u6A8GTbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQSIuP7ZNOOikTJ05s7jEAAHgfanGxXVdXl3vuuae5x2jU0NCQn/zkJ809BgAAzaDFxfZ9992Xe++9t7nHaPTUU09l6tSpzT0GAADNoFlje/LkyTnyyCNz0EEH5eijj86vfvWrJMkzzzyTL37xi+nbt29qampy4YUXZuPGjUmSq666KsOHD3/TOoccckh++ctfZtq0aZk4cWLuueee9OzZMw0NDUn++nT5ggsuSJ8+fdK/f//cfffdSZLDDz88c+bMaVznC1/4Qo477rjGP//+979PTU1NKpVKnn/++YwePTo1NTXp169fxo0blzVr1iRJ1q9fn3POOSf9+/dP7969c/zxx+ePf/xjnnzyyRx//PF5+eWX07Nnzzz00EPlXkwAAHY4bZrrL37sscdyww035NZbb83uu++eBx98MGPHjs0hhxySk08+OcOGDcvkyZPz4osvZvTo0bnyyiszbty4d1xz5MiReeaZZ7Jx48ZMmjSp8fhdd92VSy+9NOedd16uvvrqfOc738mQIUNSU1OTxx9/PAMHDszGjRvzpz/9Ka1bt8769evToUOHzJs3L7W1tUmSMWPGpE+fPpk0aVLWrVuXs846KxMmTMj48ePzs5/9LC+//HL+67/+K+3atcuUKVNy/vnn54477sj48eNz+eWX58EHH/y7Xp9KpZJ169b9/S8s7ESef/75xh9agZZl1113TZcuXZp7DCimUqmkqqpqq9c1W2yvXr06rVq1Svv27VNVVZUBAwbk0UcfzZw5c7J+/fqMHTs27dq1S/fu3TNixIhMnTp1q7G9JX369Mmhhx6aJPnUpz6V66+/Pq+++mpqa2vzy1/+MknyxBNPZJ999kmbNm3yxBNPpLa2NvPmzcsxxxyT+fPn55lnnsnNN9+cDh06pEOHDhk7dmxGjhyZiy66KKtWrUrbtm3Tvn37tGnTJmPGjMmYMWPe1euzadOmLFy48F2tATuy1atX5xvf+EYqlUpzjwIU0KpVq0ycODEf+MAHmnsUKKZdu3ZbvabZYrt///454IADMnDgwPTv3z+HHXZYhg4dmuXLl6dbt25vGr5Hjx7585//nM2bNzfp7+ratWvj19XV1UmS+vr61NTU5KKLLsobb7yRRx55JH369ElVVVUeffTRHHzwwXniiScyfvz4zJ8/Pw0NDampqXnTug0NDVm5cmW+8IUvZOTIkTn88MNz6KGHZvDgwRk0aFCTZv2btm3bZu+9935Xa8CO7pZbbvFk+33iueeey0UXXZQLLrggPXr0aO5xeA94sk1Lt2TJkm26rtliu127drnuuuuyaNGi3H///bnxxhszffr0DB069G2vf6fH9H/bm70lW7q3S5cu+ad/+qc89dRTmTdvXk499dQkybRp0/LUU09lt912S/fu3bN48eJ07Ngxjz/++Nuus9tuu+Xuu+/Oww8/nDlz5uSCCy7Ir3/96/zoRz96x7m2NnPHjh2bfD/sDPbZZ5/mHoH3SPv27ZMk++23Xz72sY818zQA7962bCFJmvENkps2bcqaNWuy//7752tf+1ruvPPOVFVVZa+99kpdXV3q6+sbr126dGm6du2aVq1apbq6OuvXr288t3r16rz22mtNnqOmpiaPPPJI5s+fn169euXAAw/M/Pnz88gjj6R///5Jku7du2fdunWpq6trvG/NmjVZuXJlkmTt2rVpaGjIv/7rv+a8887LbbfdlnvvvbfxPAAA70/NFtvTp0/PqaeemhUrViRJnn322bz++uvp3Llz2rRpk2uuuSb19fVZunRpbrjhhgwbNizJX7eULFu2LIsXL86GDRtyxRVXZJdddmlct7q6On/5y1+yatWqvPHGG1udo7a2Nrfddlv23HPPdOzYMbvuumt233333HHHHY2xve+++6Z379655JJL8uqrr2bVqlW58MILG/eQn3766ZkwYULWrFmTzZs35/HHH88HP/jBdOrUKe3bt8/q1avzwgsvZMOGDdv5VQQAYEfWbLH9la98Jfvuu2+GDRuWXr165cwzz8zZZ5+dvn37ZvLkyY1Plk899dQMHTo0o0ePTpIMGjQoRx99dI4//vgMGTIkn/jEJ7LHHns0rnvsscdm2bJlOfLII/Piiy9udY6amposW7YsBx98cOOxPn365Nlnn22M7SS5/PLLU6lUMmjQoBx11FFpaGjIZZddliQZP358nnvuuRx22GHp169ffvGLX+Saa65Jq1atUltbm65du2bw4MFv+phBAABavqqKjwLY4cyfPz9J0rNnz2aeBGD7WLhwYUaMGJEbb7zRnm2gRdjWXmtx/4IkAADsKMQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhbxvYvukk07KxIkTm3sMAADeR1psbNfV1eWee+5p7jF2mDkAAHjvtdjYvu+++3Lvvfc29xg7zBwAALz3dojYnjx5co488sgcdNBBOfroo/OrX/0qSfLMM8/ki1/8Yvr27ZuamppceOGF2bhxY5LkqquuyvDhw9+0ziGHHJJf/vKXmTZtWiZOnJh77rknPXv2TENDQ5KkoaEhF1xwQfr06ZP+/fvn7rvvbrz3+eefz+jRo1NTU5N+/fpl3LhxWbNmTeP5X//61/n0pz+d3r17Z+DAgbnpppsazy1btixf/vKX07dv3/Tr1y+nnXZaVq5cucU5AAB4f2jT3AM89thjueGGG3Lrrbdm9913z4MPPpixY8fmkEMOycknn5xhw4Zl8uTJefHFFzN69OhceeWVGTdu3DuuOXLkyDzzzDPZuHFjJk2a1Hj8rrvuyqWXXprzzjsvV199db7zne9kyJAhad26dcaMGZM+ffpk0qRJWbduXc4666xMmDAh48ePT11dXc4555xMmzYt/fv3z0MPPZSTTz45ffr0yf7775/x48enT58+mTp1atauXZtzzjknP/7xj3Puuee+7RzbolKpZN26dU16TXdmCxcuTF1dXXOPAWxnf/nLX5Ikc+fOzdNPP93M0wDbW7du3fKxj32sucd4T1UqlVRVVW31umaP7dWrV6dVq1Zp3759qqqqMmDAgDz66KOZM2dO1q9fn7Fjx6Zdu3bp3r17RowYkalTp241trekT58+OfTQQ5Mkn/rUp3L99dfn1VdfzYoVK/LMM8/k5ptvTocOHdKhQ4eMHTs2I0eOzEUXXZSuXbvmoYceSqdOnZIk/fv3z4c+9KEsWLAg+++/f1atWpX27dunTZs26dSpU6699tq0avXufmmwadOmLFy48F2tsbN55ZVX8u1zz01l8+bmHgUoZMqUKc09AlBAVatW+d6ll+ZDH/pQc4/ynmrXrt1Wr2n22O7fv38OOOCADBw4MP37989hhx2WoUOHZvny5enWrdubvokePXrkz3/+czY3Mca6du3a+HV1dXWSpL6+PnV1dWloaEhNTc2brm9oaMjKlSuz22675eabb87tt9+eF198MZVKJfX19amvr0+SnHbaafnmN7+ZO++8MwMGDMhnPvOZHHjggU2a8W/atm2bvffe+12tsbN5+umnU9m8Oa93PSgN7Xdt7nEAgG3QesOadFr+RD784Q9nv/32a+5x3jNLlizZpuuaPbbbtWuX6667LosWLcr999+fG2+8MdOnT8/QoUPf9vp3ely/tT3RW7q3uro6HTt2zOOPP/6252+77bZMnjw51157bfr165fWrVvn8MMPbzx/xBFHZO7cufmf//mf3H///TnxxBMzbty4nHjiie84z9Zm7dixY5Pv3xm1b98+SbLxH7tk067vr5+MAWBn1XbNK8nyJ9K+ffv3VbtsyxaSZAd4g+SmTZuyZs2a7L///vna176WO++8M1VVVdlrr71SV1fX+PQ4SZYuXZquXbumVatWqa6uzvr16xvPrV69Oq+99lqTZujevXvWrVv3pr3Ca9asycqVK5Mk8+fPT9++fVNbW5vWrVvnpZdeyosvvth47cqVK7PLLrvk05/+dC6//PJ897vfzYwZM5o0CwAALUezx/b06dNz6qmnZsWKFUmSZ599Nq+//no6d+6cNm3a5Jprrkl9fX2WLl2aG264IcOGDUvy1y0ly5Yty+LFi7Nhw4ZcccUV2WWXXRrXra6uzl/+8pesWrUqb7zxxjvOsO+++6Z379655JJL8uqrr2bVqlW58MILG/eGd+nSJUuXLs3rr7+e559/PhdffHH22GOPvPDCC9mwYUPjJ6i88cYb2bBhQxYsWJDu3bv/3XMAANCyNHtsf+UrX8m+++6bYcOGpVevXjnzzDNz9tlnp2/fvpk8eXIeeeSR9O/fP6eeemqGDh2a0aNHJ0kGDRqUo48+Oscff3yGDBmST3ziE9ljjz0a1z322GOzbNmyHHnkkW96Cr0ll19+eSqVSgYNGpSjjjoqDQ0Nueyyy5IkJ5xwQnr06JHDDz88X/3qV3PiiSfmxBNPzE9+8pPMnDkzV155ZX7605+mb9++OeKII7JixYpccMEFTZoDAICWo6pSqVSaewjebP78+UmSnj17NvMk762FCxdmxIgRebHnp+3ZBoCdRNs1r6Tz/Ltz4403vq8+/m9be63Zn2wDAEBLJbYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQSJum3vjss89m8eLF2bhx41vODRs27N3MBAAALUKTYnvq1KmZOHHi256rqqoS2wAAkCbG9g033JBvf/vb+fd///fssssu23smAABoEZoU22vXrs0Xv/jFVFVVbe95AACgxWjSGyT79u2bRYsWbe9ZAACgRWnSk+2TTjopF1xwQYYNG5Zu3bqlVas3N/uAAQO2y3AAALAza1Jsn3LKKUmS+fPnv+VcVVVVFi5c+O6mAgCAFqBJsX3//fdv7zkAAKDFaVJsd+nSJUmyYsWK/OlPf0pVVVX23HPPfPjDH96uwwEAwM6sSbH96quv5qyzzsrDDz+cSqWS5K/bRwYOHJiJEyemQ4cO23VIAADYGTXp00i+973vZdWqVbn66qtz7733Zvbs2bniiiuyfPnyXHnlldt7RgAA2Ck16cn2b3/728ycOTN77LFH47F/+Zd/yf7775+RI0fmW9/61nYbEAAAdlZNerJdX1+fzp07v+V4ly5dsnLlync9FAAAtARNiu0999wzs2fPfsvxu+++O926dXvXQwEAQEvQpG0ko0ePzumnn54777wz++67b5Lk6aefzkMPPZRLL710uw4IAAA7qyY92T7qqKPys5/9LLvsskt+//vfZ+7cuamurs51112XYcOGbecRAQBg59SkJ9tJ8slPfjKf/OQnt+csAADQomxzbP/oRz/K6aefniT54Q9/+I7XnnXWWe9uKgAAaAG2Obbvvvvuxti+6667tnhdVVWV2AYAgPwdsX3PPfc0fj1nzpwiwwAAQEvSpD3bf/7zn7d4rnXr1vnwhz+cVq2a9N5LAABoMZoU2wMHDkxVVdUWz7du3ToDBw7MRRddlA9+8INNnQ0AAHZqTYrtH/3oR7nssssyZMiQHHzwwamqqspjjz2W+++/P6eddlo2bNiQG264IT/4wQ9yySWXbO+ZAQBgp9Ck2J45c2a++93v5tBDD208Nnjw4AwYMCC33357fvjDH6a2tjYnnnjidhsUAAB2Nk3aWP2///u/qa2tfcvxT37yk3nggQeSJF27ds2qVave3XQAALATa1Js77rrrpk1a9Zbjt97771p3bp1kmTWrFnZfffd3910AACwE2vSNpKTTz455557bqZPn57u3bunbdu2qaury8KFC/PVr3419fX1Oeecc+zXBgDgfa1Jsf2Vr3wlBx54YGbNmpUVK1Zkw4YN+fjHP54zzzwzhx12WJLk9ttvz8c//vHtOiwAAOxMmhTbSXLwwQfn4IMP3uJ5oQ0AwPtdk//lmZkzZ+akk07KoEGDkiT19fWZPHnydhsMAAB2dk2K7Z///Oe55JJLsu++++all15KkqxcuTI33XST4AYAgP9fk2L7F7/4Ra699tqcf/75jf+S5D//8z/nqquuyi233LJdBwQAgJ1Vk2J7xYoVqampecvxj3/8441PugEA4P2uSbHduXPn/OlPf3rL8T/+8Y/p1KnTux4KAABagibF9uDBg3PmmWdm7ty5qVQqWbBgQWbMmJGxY8fm3/7t37b3jAAAsFNq0kf/ff3rX8/555+fMWPGZPPmzfn85z+fNm3aZPjw4fnGN76xvWcEAICdUpNiu127dpkwYULOPffcPPfcc6murk737t3ToUOH7T0fAADstJq0jeRzn/tckqRTp0458MADs99++wltAAD4P5oU2xs3bszixYu39ywAANCiNGkbyfDhw/P1r389AwYMSLdu3dK2bdvGc1VVVRk+fPh2GxAAAHZWTYrt733ve0mSZ5999i3nxDYAAPxVk2J70aJF23sOAABocZq0ZxsAANg6sQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AACjkfRHbAwcOzM0339zcYwAA8D7TImN7wYIF+d3vftfcYzR67bXXcttttzX3GAAAvMdaZGzPnDlzh4rthx56SGwDALwP7RCxvd9+++W+++7LCSeckF69euXYY4/NU0891Xh+3rx5GT58eHr37p0BAwZk0qRJ2bx5c5LkqquuyqhRo3LmmWemT58+GT9+fG666aZMnz49Rx11VOMaa9euzemnn55evXrlyCOPzMMPP5wNGzbkE5/4RJ5++unG64444oiceeaZjX++7bbb8tnPfjZJsmjRonzpS19K3759U1tbm4svvjibNm1Kkrz88sv52te+lpqamvTp0ydf/vKXU1dXl9mzZ+ess87Kk08+mZ49e6aurq7kSwkAwA6kTXMP8DdTp07NZZddlt133z2nnXZaJk2alClTpuTll1/OyJEjM27cuBx33HFZsmRJTj311HTu3DkjRoxIkvzhD3/IGWeckcsvvzytW7fO4sWLc9BBB+Xss89uXP/222/P97///fzgBz/Ieeedl4svvjizZs3KQQcdlMcffzz77bdf6urqUl1dnT/84Q+N9z366KPp379/1q9fn1NOOSUnnXRSpkyZkhdeeCFjxozJtGnTMnr06Fx55ZXp1KlTfvOb36ShoSGXXXZZJkyYkKuvvjpLlizJAw88kFtvvXWbX49KpZJ169Ztt9d3Z7Bhw4YkSZv1rzfzJADAtvrb/7c3bNjwvmqXSqWSqqqqrV63w8T20KFDs9deeyX56xsap02bliS56667ssceezSG9QEHHJChQ4dm9uzZjcdat26dE0444R2/4YEDB+bAAw9MkgwZMiSzZ89OktTW1ubxxx/P8ccfn3nz5qVfv3557LHHUldXl27dumXevHm58MILM3fu3FQqlYwaNSpJ0q1bt4wcOTLXX399Ro8enVWrVuWDH/xg2rVrl6qqqnznO99Jq1ZN/8XBpk2bsnDhwibfvzN65ZVX0qZt2+y25MHmHgUA+Du0ads2L730UuPOg/eLdu3abfWaHSa2u3bt2vh1hw4dsnHjxiTJ8uXL89GPfvRN1/bo0aMxlpPkIx/5yFZ/svh/16+urm7c/lFTU5NZs2YlSR555JH07ds3DQ0NefTRR9OuXbusWLEiffv2zc9//vO88sor6dmzZ+M6lUql8UU+5ZRT8h//8R954IEHMmDAgBxzzDHp379/U16KJEnbtm2z9957N/n+ndUtN9+c11/3ZBtamueeey4XXXRRLrjggvTo0aO5xwG2s06dOuUjH/lIc4/xnlqyZMk2XbfDxPaWYrm+vn6r17dps/VvY0vr9+rVKy+88EJeffXVzJs3L6NGjUpDQ0Mee+yxtGvXLr17906HDh1SXV2dffbZpzHM/6+ePXtmzpw5eeCBBzJ37tycdtppGT58eM4555ytzraleTt27Nike3dmf/vtBtCytG/fPslf36PzsY99rJmnAXj3tmULSbKDvEHynXTv3j1Lly5907GlS5emW7du22X9vwX1vffem3Xr1qVHjx7p3bt3Hnvsscb92n+bo66uLmvXrm28d+XKlVmzZk2Sv368X9u2bTNo0KCMHz8+P/7xj3PLLbdslxkBANg57fCxfcwxx6Suri4zZszIG2+8kSeffDJ33HFH4yeEvJ3q6uosX758m7cj1NbW5mc/+1kOPvjgJMlHP/rRvPTSS/nd737XGNsDBgzIbrvtlgkTJmTNmjV56aWXcsYZZ2TixIlJkuOPPz5TpkzJxo0bs2nTpjzxxBONvyqtrq7OSy+9lNdee22LT+oBAGh5dvjY7tKlS66++urMmDEj/fr1yze/+c2cccYZGTZs2Bbv+dznPpff/OY3GTJkSBoaGrb6d9TU1GTZsmWNsV1VVZWDDjooL774YuObKtu2bZtrr702S5cuzSGHHJJhw4Zlzz33bNwmcsUVV+S///u/U1tbm3/913/N73//+8YQHzx4cCqVSo444oj88Y9/fJevCAAAO4uqSqVSae4heLP58+cnyZvejAmwM1u4cGFGjBiRG2+80Z5toEXY1l7b4Z9sAwDAzkpsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQt5XsT1w4MDcfPPNzT0GAADvEy06thcsWJDf/e53zT3GDjMHAADvrRYd2zNnztwhIndHmQMAgPfWDhXb++23X+67776ccMIJ6dWrV4499tg89dRTjefnzZuX4cOHp3fv3hkwYEAmTZqUzZs3J0muuuqqjBo1KmeeeWb69OmT8ePH56abbsr06dNz1FFHNa6xdu3anH766enVq1eOPPLIPPzww43nFi1alC996Uvp27dvamtrc/HFF2fTpk2N53/6059m8ODB6d27d4455pjcd999jeeeeOKJxtlqamryn//5n9mwYcMW5wAAoOVr09wD/F9Tp07NZZddlt133z2nnXZaJk2alClTpuTll1/OyJEjM27cuBx33HFZsmRJTj311HTu3DkjRoxIkvzhD3/IGWeckcsvvzytW7fO4sWLc9BBB+Xss89uXP/222/P97///fzgBz/Ieeedl4svvjizZs3K+vXrc8opp+Skk07KlClT8sILL2TMmDGZNm1aRo8enUceeSSXX355Zs6cmX322Sd33HFHzj777MydOze77bZbxo0bl1NOOSWf//zn8/LLL2fMmDGZMWNGzj///LedY2sqlUrWrVu33V9f2JE8//zzWbNmTXOPwXvgueeeS5I8/fTT2bBhQzNPw3th1113TZcuXZp7DCimUqmkqqpqq9ftcLE9dOjQ7LXXXkn++obGadOmJUnuuuuu7LHHHo1hfcABB2To0KGZPXt247HWrVvnhBNOeMdvfODAgTnwwAOTJEOGDMns2bOTJHPnzk2lUsmoUaOSJN26dcvIkSNz/fXXZ/To0Tn44IPz4IMP5h/+4R+SJJ/5zGfy7W9/O4sXL05tbW1WrVqVjh07plWrVuncuXNuvfXWtGrV9F8cbNq0KQsXLmzy/bCjW716db7xjW+kUqk09yi8hy666KLmHoH3SKtWrTJx4sR84AMfaO5RoJh27dpt9ZodLra7du3a+HWHDh2ycePGJMny5cvz0Y9+9E3X9ujRozGWk+QjH/nIVn/C+H/Xr66ubtwmUldXl1deeSU9e/ZsPF+pVBpfxIaGhlxzzTW555578uqrrzZeU19fnyQ566yzcu6552batGkZMGBAhg4d+pZ5/x5t27bN3nvv3eT7YWdwyy23eLINLZQn27R0S5Ys2abrdrjY3lIs/y1q3+n6Nm22/u1saf3q6urss88+mTVr1tuev+aaazJ79uxcd9112X///VOpVHLAAQc0nj/uuOMyePDgzJkzJ/fff3+GDRuWSZMmZfDgwVudaUtzduzYsUn3ws5in332ae4RAKBJtmULSbKDvUHynXTv3j1Lly5907GlS5emW7du2239urq6rF27tvHYypUrG5+6zZ8/P4MGDcoBBxyQVq1aZcGCBW+6f+XKlfnHf/zHfP7zn8+1116bUaNG5fbbb98uswEAsHPaaWL7mGOOSV1dXWbMmJE33ngjTz75ZO6444589rOf3eI91dXVWb58eV5//fWtrj9gwIDstttumTBhQtasWZOXXnopZ5xxRiZOnJgk6dKlSxYtWpT169dnyZIlmTp1aj7wgQ/khRdeyIoVKzJw4MD89re/zebNm7N69eosXrw43bt3/7vnAACg5dhpYrtLly65+uqrM2PGjPTr1y/f/OY3c8YZZ2TYsGFbvOdzn/tcfvOb32TIkCFpaGh4x/Xbtm2ba6+9NkuXLs0hhxySYcOGZc8998w555yTJBk1alQaGhpSW1ubb33rWxk7dmw++9nP5uKLL86CBQtyySWX5JJLLknv3r3zqU99KrvssktOP/30v3sOAABajqqKjwLY4cyfPz9J3vRmTQAAdhzb2ms7zZNtAADY2YhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIW2aewDeatOmTalUKpk/f35zjwIAwNuor69PVVXVVq8T2zugbfkPBwBA86mqqtqmZquqVCqV92AeAAB437FnGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAh/x+IYu1YwE4y4QAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.boxplot(y='region', data=data)"
]
},
{
"cell_type": "code",
"execution_count": 174,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 478
},
"id": "HlOhDC6gcQSr",
"outputId": "8d2258bc-339b-4bba-ca0d-a853ac60b154"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 174,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqUAAAG7CAYAAAD67OxEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAXFklEQVR4nO3de2yVhf3H8e+D9FjKpUlVZMOIuJrihD82dUy8RDedOufGzCbuEudu3ohOghcWRc2coFOMlyXzkukylwjZso2NbP5h2NwlLLthrK4Qy0gzmUYGCmKpbenz+8PIb/zcbx4Op/1WzuuVEODpc9qPfwhvnuec06IsyzIAACDRmOwBAAAgSgEASCdKAQBIJ0oBAEgnSgEASCdKAQBIJ0oBAEgnSgEASDc2e0Ct1q5dG2VZRlNTU/YUAAD+g4GBgSiKIt73vve97bnv2CgtyzJ8MyoAgNFrb1rtHRulb14hnTVrVvISAAD+k87OzqrP9ZxSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSjc384h0dHdHU1BRFUew+dv7558fixYsTVwEAMNJSozQi4vHHH4/DDjssewYAAIncvgcAIF36ldJly5bF2rVrY8eOHXH22WfHokWLYvz48VU9tizL6O3tHeaFkGvTpk2xY8eO7BnAMJgwYUJMnTo1ewYMm7Is93ia5n9TlGVZDvOe/9e8efPiU5/6VHziE5+If/zjH3HVVVfF0UcfHd/61rfe9rGdnZ3R398/Aishz6uvvhoLFy6MxP9NgWE0ZsyYuPPOO2PixInZU2DYVCqVmDVr1tuelxql/9eTTz4Zl112WTz11FNRqVT+67mdnZ1RlmW0t7eP0DrI4Upp4+jp6YlvfOMbceONN8a0adOy5zACXCllf9fd3R1FUVQVpem37//dYYcdFrt27YotW7bEu971rrc9vyiKaGlpGYFlkOeoo47KnsAIaW5ujog33pnk6KOPTl4DsO+qvXUfkfhCp7/97W9x22237XFsw4YNUalUYvLkyUmrAADIkBalBx10UKxYsSIefPDB6O/vj40bN8Y999wT8+bNiwMOOCBrFgAACdKi9NBDD40HH3wwVq9eHbNnz44LLrggTj755LjmmmuyJgEAkCT1OaXHH398LF++PHMCAACjgDfPBwAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIN2oidIlS5ZER0dH9gwAABKMiijt6uqKlStXZs8AACBJepQODQ3FTTfdFBdddFH2FAAAkozNHrB8+fI48MAD49xzz4277757rx5blmX09vYOzzCAEdbX17f7Z3+2AfuDsiyjKIqqzk2N0n/9619x3333xaOPPlrT4wcGBqKrq6vOqwBy9PT0RETExo0bY2hoKHkNQH1UKpWqzkuN0qVLl8Z5550X7e3t8fzzz+/145uamqK9vX0YlgGMvDFj3nhG1fTp073wE9gvdHd3V31uWpSuWbMm1q5dG6tWrar5cxRFES0tLXVcBZCnubl598/+bAP2B9Xeuo9IjNKf/exnsWXLljjttNMi4o3nHEREzJ49O2688cY455xzsqYBADDC0qJ00aJF8bWvfW3371988cWYN29erFy5MlpbW7NmAQCQIC1KW1tb94jPwcHBiIiYMmVK1iQAAJKkv0/pmw477LBYv3599gwAABKMmigFAKBxiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0olSAADSiVIAANKJUgAA0qVG6bp16+ILX/hCHHvssTFnzpy46qqrYvPmzZmTAABIkBal/f398aUvfSk+8IEPxJo1a2LVqlWxZcuWuPnmm7MmAQCQJC1Kd+7cGQsWLIhLLrkkKpVKtLW1xRlnnBHPPfdc1iQAAJKMzfrCra2t8elPf3r37//+97/HT37ykzj77LOr/hxlWUZvb+9wzAMYcX19fbt/9mcbsD8oyzKKoqjq3LQofdOmTZvizDPPjMHBwTj//PPjyiuvrPqxAwMD0dXVNYzrAEZOT09PRERs3LgxhoaGktcA1EelUqnqvPQonTp1anR2dkZPT0/ceOONce2118ayZcuqemxTU1O0t7cP80KAkTFmzBvPqJo+fXp0dHQkrwHYd93d3VWfmx6lERFFUcQRRxwRCxYsiAsuuCCuv/76aGtrq+pxLS0tI7AQYPg1Nzfv/tmfbcD+oNpb9xGJL3Ras2ZNnHnmmXvconrzKkFTU1PWLAAAEqRF6cyZM2PHjh1xxx13xM6dO2Pr1q1x3333xXHHHRcTJ07MmgUAQIK0KJ04cWI8/PDD8cwzz8QHP/jBOOecc2LixIlx1113ZU0CACBJ6nNKOzo64tFHH82cAADAKJD6bUYBACBClAIAMAqIUgAA0olSAADSiVIAANKJUgAA0olSAADS1fw+pU8++WQ899xz0dfXt8fxoihi/vz5+zwMAIDGUVOULlmyJL7//e/HuHHjYvz48W/5uCgFAGBv1BSlq1atim9/+9tx+umn13sPAAANqKbnlA4MDMSHP/zhem8BAKBB1RSlp556avzxj3+s9xYAABpUTbfvTz755LjpppvitNNOi8MPPzzGjPnfti2KIs4///y6DQQAYP9XU5Ree+21ERHxyCOPvOVjohQAgL1VU5SuW7eu3jsAAGhg+/Tm+c8//3z84Q9/qNcWAAAaVE1RunXr1vjc5z4Xp59+enzlK1+JiIjNmzfHxz72sXjhhRfqOhAAgP1fTVF62223RaVSiR/+8Ie7X+Q0ceLE6OjoiNtvv72uAwEA2P/V9JzS3/zmN7Fy5co49NBDoyiKiIhobm6OG264Ic4444y6DgQAYP9X85vnT548+S3Hm5ubY2BgYJ9HAQDQWGqK0ve85z3x+OOPv+X4ihUr4sgjj9znUQAANJaabt9/9atfjYULF8Yvf/nL2LVrV9xyyy3x7LPPxtNPPx133313nScCALC/q+lK6RlnnBEPPPBADA0NxeGHHx5r166NqVOnxvLly+MjH/lIvTcCALCfq+lK6TPPPBMnnHBCnHDCCfXeAwBAA6rpSumFF14Yu3btqvcWAAAaVE1R+tGPfjS+973vRVmW9d4DAEADqun2/csvvxy/+tWv4qGHHop3v/vdUalU9vj48uXL6zIOAIDGUFOUTpo0KU455ZR6bwEAoEHVFKVLly6t9w4AABpY1VH605/+tOpPOnfu3BqmAADQqKqO0kWLFu3x+6Io3vJCp6IooqmpSZQCALBXqo7Sp59+evev16xZEz/4wQ9i/vz5cdRRR0VZltHV1RX3339/fPnLXx6WoQAA7L+qjtJ/f4X9nXfeGd/97ndj8uTJu48df/zxMXXq1Lj44otj1apV9V0JAMB+rab3KX3++eejtbX1Lcfb2tpi06ZN+zwKAIDGUlOUTp8+PZYuXRrbtm3bfWzbtm1x5513xrRp0+o2DgCAxlDTW0Jdf/31cfnll8eKFSti/PjxERHx2muvRXNzc9x///11HQgAwP6vpig99thj49e//nU8+eST8eKLL8brr78eU6ZMiZNPPjna2trqvREAgP1cTVEaETFu3Lg466yz6rkFAIAGVXWUnnTSSVV/0t/97nc1jQEAoDFVHaXz5s2LoiiGcwsAAA2q6ii94oorhnMHAAANrOoovffee+PKK6+MiIi77rrr/z2vKIpYsGDBvi8DAKBhVB2lv/jFL3ZH6X/7jk2iFACAvVV1lD7++OO7f7169ephGQMAQGOq+S2hBgcH46WXXorXX3/9LR+bPn36Po0CAKCx1BSlTzzxRFx//fWxffv2PY6XZRlFUURXV1ddxgEA0BhqitJbb701TjnllDj33HOjubm53psAAGgwNUXp1q1b49Zbb41KpVLvPQAANKAxtTzoqKOOim3bttV7CwAADaqmKL355pvjjjvuiO7u7nj99dejv79/jx8AALA3qr59P2PGjD2+zWhZlvHzn//8P57rhU4AAOyNqqN0yZIlb4nS/v7+OPDAAyMi4tVXX40JEybscQ4AAFSj6ig977zzdv/6n//8Z1x66aVx+eWXx1lnnRUREQ8//HA8/PDD8cADD9R/JQAA+7WanlO6dOnSmD59erz//e/ffezjH/94zJw5M5YsWVK3cQAANIaa3hLqT3/6U6xevTpaWlp2Hzv44INj8eLF8aEPfahu4wAAaAw1XSktyzIGBgbecvy1116LXbt27fMoAAAaS01Resopp8R1110X69atix07dsT27dtj7dq1sXDhwjj11FPrPBEAgP1dTbfvv/71r8f8+fNj7ty5e7za/rjjjoubbrqpbuMAAGgMNUVpW1tbPPbYY7Fu3bro6emJAw44II444ohob2+v9z4AABpATVH6phkzZsSMGTPqtQUAgAZV03NKAQCgnkQpAADpRCkAAOlEKQAA6UQpAADpRCkAAOlSo3TTpk0xf/78mD17dsyZMycWLVoU27dvz5wEAECC1Ci99NJLY9KkSbF69er48Y9/HM8991zcfvvtmZMAAEiQFqXbt2+PmTNnxsKFC2P8+PExZcqU+OQnPxl//vOfsyYBAJBkn76j076YNGlSLF26dI9jL7zwQkyePLnqz1GWZfT29tZ72qj34osvxrZt27JnAHXW09MTERHr16+Pvr6+5DVAvbW2tsaUKVOyZ4yosiyjKIqqzi3KsiyHeU9VOjs74/Of/3x85zvfiTlz5lR1fn9//wgsG122bNkSNyxeHIMDA9lTAIC9MLapKb55yy1x0EEHZU8ZUZVKJWbNmvW256VdKf13f/nLX+Kyyy6LhQsXVhWkb2pqaor29vZhXDb6rF+/PgYHBmJr+4kxOK41ew4AUIWxO7dFW/fv45BDDomOjo7sOSOmu7u76nPTo3T16tVxzTXXxOLFi2Pu3Ll79diiKKKlpWV4ho1Szc3NERExOK41BiY01r+0AOCdrrm5uaHapdpb9xHJUfrXv/41rrvuurjnnnvipJNOypwCAECitFffDw4Oxg033BBXX321IAUAaHBpUfrUU0/Fhg0b4pvf/GbMmjVrjx+bNm3KmgUAQIK02/fHHXdcrF+/PuvLAwAwiqR+RycAAIgQpQAAjAKiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdKIUAIB0ohQAgHSiFACAdOlR+tvf/jbmzJkTCxYsyJ4CAECSsZlf/KGHHoof/ehHMW3atMwZAAAkS71SeuCBB4pSAAByr5ReeOGF+/T4siyjt7e3TmveGfr6+iIiYuzObclLAIBqvfn3dl9fX0O1S1mWURRFVeemRum+GhgYiK6uruwZI6qnpyciItq6f5+8BADYWxs3boyhoaHsGSOqUqlUdd47Okqbmpqivb09e8aIGjPmjWdcbG0/MQbHtSavAQCqMXbntmjr/n1Mnz49Ojo6sueMmO7u7qrPfUdHaVEU0dLSkj1jRDU3N0dExOC41hiYcFDyGgBgbzQ3NzdUu1R76z5iFLwlFAAAiFIAANKl3r6fNWtWREQMDg5GRMQTTzwRERGdnZ1pmwAAGHmpUSo+AQCIcPseAIBRQJQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkE6UAgCQTpQCAJBOlAIAkC41Sjdt2hQXX3xxzJ49O0477bS44447YmhoKHMSAAAJxmZ+8SuuuCKOOeaYeOKJJ2LLli1xySWXxMEHHxxf/OIXM2cBADDC0q6UdnZ2xrp16+Lqq6+OiRMnxhFHHBEXXXRRrFixImsSAABJ0q6UPvvsszF16tRobW3dfeyYY46JjRs3xo4dO2LChAlv+znKsoze3t7hnDnq9PX1RUTE2J3bkpcwUsb098aYXQPZM4BhMHRAUwxVWrJnMALe/Hu7r6+vodqlLMsoiqKqc9Oi9JVXXolJkybtcezNQH355ZeritKBgYHo6uoaln2j1ZYtW2JsU1O0df8+ewoAsBfGNjXF5s2bG+71M5VKparzUp9TWpblPj2+qakp2tvb67TmnWP5Y4/Ftm2ulDaKzZs3N9S/qqGRtLS0xCGHHJI9gxHS2toaU6ZMyZ4xorq7u6s+Ny1K29ra4pVXXtnj2CuvvBJFUURbW1tVn6MoimhpabzbHkceeWT2BACAt1XtrfuIxBc6zZw5M1544YXYunXr7mOdnZ3R3t4e48ePz5oFAECCtCh973vfG7NmzYply5bFjh07YsOGDfHII4/EZz7zmaxJAAAkSX3z/HvvvTdeeumlOPHEE+PCCy+MuXPnxmc/+9nMSQAAJEh9odOUKVPioYceypwAAMAokHqlFAAAIkQpAACjgCgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAgnSgFACCdKAUAIJ0oBQAg3djsAbUaGBiIsiyjs7MzewoAAP9Bf39/FEVR1bnv2Cit9j8QAIAcRVFU3WxFWZblMO8BAID/ynNKAQBIJ0oBAEgnSgEASCdKAQBIJ0oBAEgnSgEASCdKAQBIJ0oBAEj3P7PNVQAOgpwfAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.boxplot(y= 'children', data=data)"
]
},
{
"cell_type": "code",
"execution_count": 175,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 478
},
"id": "IgVM3zLRcQXi",
"outputId": "a92460fd-0c1e-4d90-c3f9-3bfb11cbbcff"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 175,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAG7CAYAAADEyYMKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9iElEQVR4nO3de3RU9b3//9dMbkPIjSSINLAEiUBuxkJbPOiXi55AREFgIRJQG7wiCgWlBy0kYMArIgr2cLGFig1tCkoUWxAowqpH2opH7RBDIxGtSaMJMAMEMpNJZn5/+MschqAmMclOsp+PtVzJ3p/P3nnPrOXkxSef/flYfD6fTwAAAIBJWY0uAAAAADASgRgAAACmRiAGAACAqRGIAQAAYGoEYgAAAJgagRgAAACmRiAGAACAqRGIAQAAYGrBRhfQGX3wwQfy+XwKCQkxuhQAAABchMfjkcVi0Q9/+MPv7EsgbgGfzyc2+AMAAOi4mpPVCMQt0DAynJaWZnAlAAAAuBi73d7kvswhBgAAgKkRiAEAAGBqBGIAAACYGoEYAAAApkYgBgAAgKkRiAEAAGBqBGIAAACYGoEYAAAApkYgBgAAgKkRiAEAAGBqBGIAAACYGoEYACCv16uamhp5vV6jSwGAdhdsdAEAAOOUlJQoPz9fe/bskcvlks1mU0ZGhmbMmKGBAwcaXR4AtAsCMQCY1K5du5Sbm6uePXtq5syZ6tOnj8rKylRYWKidO3cqLy9PmZmZRpcJAG2OQAwAJlRSUqLc3FxlZmYqJydHISEh/rbs7GwtW7ZMubm5uvzyyxkpBtDlMYcYAEwoPz9fPXv2bBSGJSkkJEQ5OTmKj4/Xli1bDKoQANoPgRgATMbr9WrPnj2aOHFiozDcICQkRJMmTdLu3bvl8/nauUIAaF8EYgAwGbfbLZfLpT59+nxrv4SEBLlcLrlcrnaqDACMQSAGAJMJCwuTzWZTWVnZt/YrLy+XzWaTzWZrp8oAwBgEYgAwGavVqoyMDBUWFsrj8Vy0j8fj0fbt2zVmzBhZLJZ2rhAA2heBGABMaMaMGaqqqtKyZcsahWKPx6O8vDwdP35c06dPN6hCAGg/LLsGACY0cOBA5eXlKTc3V4cOHdKkSZOUkJCg8vJybd++XcePH1deXh5LrgEwBQIxAJhUZmamLr/8cm3ZskWbNm3y71Q3ZswYTZ8+nTAMwDQsPtbTaTa73S5JSktLM7gSAGgdXq9XbrdbNpuNOcMAuoTm5DVGiAEAslqt6tatm9FlAIAheKgOAAAApkYgBgAAgKkRiAEA8nq9qqmpkdfrNboUAGh3zCEGABMrKSlRfn6+9uzZ419lIiMjQzNmzGCVCQCmYfgI8dq1a3XttdfqqquuUnZ2tn8r0YMHD2rKlCkaMmSIbrzxRr3xxhsB123evFljx47VkCFDlJWVpcOHD/vb3G63cnNzNWLECA0bNkxz586Vw+Hwt5eXl+vee+/VsGHDNHr0aK1YsYJREQCms2vXLt122206dOiQZs6cqccff1wzZ87UoUOHdNttt2nXrl1GlwgA7cLQQJyfn6833nhDmzdv1jvvvKPExET95je/UWVlpWbPnq1p06bp4MGDWrRokXJycvzLZ+zbt09r1qzRM888o3fffVejR4/WrFmzdO7cOUnSqlWrVFRUpIKCAr311lvy+Xx69NFH/T93zpw56tWrl/bu3atNmzZp7969evnllw15DwDACCUlJcrNzVVmZqYKCwt1zz336IYbbtA999yjwsJCZWZmKjc3VyUlJUaXCgBtztBAvHHjRs2fP1+XX365IiIitHjxYi1evFg7duxQv379NGXKFIWFhWn48OG67rrrtHXrVklSQUGBJk+erPT0dNlsNt19992SpLffflt1dXXatm2bZs+erd69eysmJkbz5s3T/v379dVXX8lut+vIkSNasGCBIiMj1a9fP2VnZ6ugoMDItwIA2lV+fr569uypnJwchYSEBLSFhIQoJydH8fHx2rJli0EVAkD7MWwO8VdffaWysjKdOnVK48aN04kTJzRs2DAtXbpURUVFSk5ODuifnJysnTt3SpKKioo0btw4f5vValVSUpLsdruSkpJ05swZpaSk+NsHDBggm82moqIiVVZWKiEhQdHR0f72lJQUHTt2TNXV1YqIiGhS/T6fzz8iDQCdidfr1e7du3X77bfL4/HI4/FctN9NN92kV155RT//+c/ZrANAp+Pz+Zr82WVYIP7yyy8lfT2HbdOmTfL5fJo7d64WL14sl8ulXr16BfSPiYnxzwN2Op0BgVaSoqOj5XA45HQ6JUlRUVEB7VFRUf72C9sa7uVwOJociD0ej4qLi5v2YgGgA3G73XK73ZL0rZ9jPp9PbrdbH330kcLCwtqrPABoNaGhoU3qZ1ggbtgx+u677/aH3zlz5uiee+7R8OHDm3x9S9pbY7fqkJAQJSYmfu/7AEB783q9/oCblJT0jf3+9re/KSwsTOnp6YwQA+h0jh492uS+hgXi+Ph4SYEjuQkJCfL5fPJ4PP6R3gYOh0OxsbGSpB49ejRqdzqduuKKK/x9nE6nunfv7m8/deqU4uLiVF9ff9FrLRaL/9qmsFgsCg8Pb3J/AOhIxowZoz/+8Y+65557Gs0hlr7+K9ibb76psWPHBnyWAkBn0Zx/yBv2UN2ll16qiIiIgD/XlZeXKyQkRCNHjgxYRk2SDh8+rPT0dElSamqqioqK/G319fX6+OOPlZ6err59+yo6OjqgvaSkRLW1tUpNTVVqaqoqKip08uRJf7vdbldiYiIf+gBMY8aMGaqqqtKyZcvk8XgCNubweDzKy8vT8ePHNX36dKNLBYA2Z1ggDg4O1pQpU7Ru3Tp9/vnnOnHihH75y19q/PjxmjRpksrLy7V161a53W4dOHBABw4c0NSpUyVJWVlZKiws1IcffqiamhqtXbtWoaGhGjVqlIKCgjR16lStW7dOFRUVcjgceu6555SRkaH4+HglJycrLS1NK1euVHV1tUpLS7Vp0yZlZWUZ9VYAQLsbOHCg8vLytHPnTo0aNUpXX321rrnmGl199dUaNWqUdu3apby8PDbnAGAKhu5U9/DDD6u2tla33HKLPB6Pxo4dq8WLF6t79+5av369li9frscee0wJCQlasWKFBg8eLEkaMWKEHnroIc2bN08nTpxQWlqaNmzYIJvNJkmaO3euzp49q5tvvll1dXUaPXq0li5d6v+5q1evVk5Ojq655hpFRERo2rRpjIIAAACYlMXXGk+YmUzDBiFpaWkGVwIALVNSUqLbbrtNmZmZysnJUVBQkNxut2w2m+rq6rRs2TLt2rVLv/3tbxklBtApNSevGb51MwCg/V24MYfValW3bt1ksVjYmAOA6RCIAcBkvF6v9uzZo4kTJ150hQnp66UlJ02apN27d7fKUpUA0JERiAHAZNxut1wul/r06fOt/RISEuRyueRyudqpMgAwBoEYAEwmLCxMNptNZWVl39qvvLxcNpvN/8AyAHRVBGIAMBmr1aqMjAwVFhbK4/FctI/H49H27ds1ZswYdqkD0OURiAHAhC7cmON8bMwBwGwMXYcYAGCMho05cnNzdejQIU2aNEkJCQkqLy/X9u3bdfz4cTbmAGAaBGIAMKnMzExdfvnl2rJlizZt2iSXyyWbzaYxY8Zo+vTphGEApsHGHC3AxhwAuhqv1+vfmIM5wwC6gubkNUaIAQD+jTkAwIx4qA4AAACmRiAGAACAqRGIAQAAYGoEYgAAAJgagRgAAACmRiAGAACAqRGIAQAAYGoEYgCAvF6vampq5PV6jS4FANodG3MAgImVlJQoPz9fe/bs8W/dnJGRoRkzZrB1MwDTIBADgEnt2rVLubm56tmzp2bOnKk+ffqorKxMhYWF2rlzp/Ly8pSZmWl0mQDQ5gjEAGBCJSUlys3NVWZmpnJychQSEuJvy87O1rJly5Sbm6vLL7+ckWIAXR5ziAHAhPLz89WzZ89GYViSQkJClJOTo/j4eG3ZssWgCgGg/RCIAcBkvF6v9uzZo4kTJzYKww1CQkI0adIk7d69Wz6fr50rBID2RSAGAJNxu91yuVzq06fPt/ZLSEiQy+WSy+Vqp8oAwBgEYgAwmbCwMNlsNpWVlX1rv/LyctlsNtlstnaqDACMQSAGAJOxWq3KyMhQYWGhPB7PRft4PB5t375dY8aMkcViaecKAaB9EYgBwIRmzJihqqoqLVu2rFEo9ng8ysvL0/HjxzV9+nSDKgSA9sOyawBgQgMHDlReXp5yc3N16NAhTZo0SQkJCSovL9f27dt1/Phx5eXlseQaAFMgEAOASWVmZuryyy/Xli1btGnTJv9OdWPGjNH06dMJwwBMw+JjPZ1ms9vtkqS0tDSDKwGA1uH1euV2u2Wz2ZgzDKBLaE5eY4QYACCr1apu3boZXQYAGIKH6gAAAGBqBGIAAACYGoEYACCv16uamhp5vV6jSwGAdsccYgAwsZKSEuXn52vPnj3+VSYyMjI0Y8YMVpkAYBoEYgAwqV27dik3N1c9e/bUzJkz1adPH5WVlamwsFA7d+5UXl6eMjMzjS4TANocgRgATKikpES5ubnKzMxUTk6OQkJC/G3Z2dlatmyZcnNzdfnllzNSDKDLYw4xAJhQfn6+evbs2SgMS1JISIhycnIUHx+vLVu2GFQhALQfAjEAmIzX69WePXs0ceLERmG4QUhIiCZNmqTdu3eL/ZsAdHUEYgAwGbfbLZfLpT59+nxrv4SEBLlcLrlcrnaqDACMQSAGAJMJCwuTzWZTWVnZt/YrLy+XzWaTzWZrp8oAwBgEYgAwGavVqoyMDBUWFsrj8Vy0j8fj0fbt2zVmzBhZLJZ2rhAA2heBGABMaMaMGaqqqtKyZcvk8XgCNubweDzKy8vT8ePHNX36dKNLBYA2x7JrAGBCAwcOVF5ennJycvTnP/9ZHo9HdXV1Cg4OVkhIiGpra7Vs2TKWXANgCowQAwAAwNQYIQYAE2rYmOOGG25QTk6OgoKC5Ha7ZbPZVFdXx8YcAEyFEWIAMKELN+awWq3q1q2bLBYLG3MAMB0CMQCYDBtzAEAgAjEAmAwbcwBAIAIxAJgMG3MAQCACMQCYDBtzAEAgAjEAmNCFG3Ocj405AJiNocuuDRo0SCEhIQGjD1OnTlVOTo4OHjyolStX6tNPP1Xv3r113333acKECf5+mzdvVn5+vqqqqjRo0CAtWrRIqampkr6eH/f4449r//79crvdGjZsmB577DH16NFD0td/Bnzsscf00UcfKTw8XOPGjdPDDz8sq5V/HwAwh4aNOXJzc3Xo0CFNnDhRl1xyiSorK1VYWKjjx48rLy+PJdcAmILh6xDv2rWr0YMdlZWVmj17thYtWqTx48fr/fff1/3336/+/fsrLS1N+/bt05o1a/SrX/1KgwYN0ubNmzVr1izt3r1b4eHhWrVqlYqKilRQUKBu3bopJydHjz76qNatWydJmjNnjlJSUrR3716dOHFC9913n+Lj4zVz5kwj3gIAMERmZqaCgoL04osv+j8fJalv3756/PHHlZGRYWB1ANB+OuSQ6I4dO9SvXz9NmTJFYWFhGj58uK677jpt3bpVklRQUKDJkycrPT1dNptNd999tyTp7bffVl1dnbZt26bZs2erd+/eiomJ0bx587R//3599dVXstvtOnLkiBYsWKDIyEj169dP2dnZKigoMPIlA0C727VrlxYtWqS6ujrNmjVLS5Ys0axZs1RXV6dFixZp165dRpcIAO3C8BHilStX6oMPPlB1dbVuuOEGPfLIIyoqKlJycnJAv+TkZO3cuVOSVFRUpHHjxvnbrFarkpKSZLfblZSUpDNnziglJcXfPmDAANlsNhUVFamyslIJCQmKjo72t6ekpOjYsWOqrq5WREREk+r2+Xw6d+7c93npAGCYTz75RDk5OcrIyNAjjzyi4OD/+3Uwbdo0PfXUU8rJyVHv3r11xRVXGFgpALSMz+dr8kPBhgbiq666SsOHD9fTTz+tL774QvPmzdNjjz0mp9OpXr16BfSNiYmRw+GQJDmdzoBAK0nR0dFyOBxyOp2SpKioqID2qKgof/uFbQ33cjgcTQ7EHo9HxcXFTX6tANCRbNq0STExMbr55pv1ySefyOv1yuPx+Hetu/nmm/X3v/9dv/rVr5SdnW10uQDQIqGhoU3qZ2ggPn+awoABA7RgwQLdf//9Gjp06Hde+107J31be2vsuhQSEqLExMTvfR8AaG9er1fvv/++br/9dtlsNm3dulV//vOf5Xa7FRYWpuuvv1633HKLJk+erFdeeUVPPfUUS68B6HSOHj3a5L6GT5k4X58+fVRfXy+r1eof6W3gcDgUGxsrSerRo0ejdqfTqSuuuMLfx+l0qnv37v72U6dOKS4uTvX19Re91mKx+K9tCovFovDw8Ka/OADoIGpqauR2u3X69Gndddddslgsqq+vl/T1Kj1vvfWWdu3apSlTpsjtdstqtapbt24GVw0AzdOcf8gb9lDdxx9/rKeeeirgXGlpqUJDQzVy5EgdPnw4oO3w4cNKT0+XJKWmpqqoqMjfVl9fr48//ljp6enq27evoqOjA9pLSkpUW1ur1NRUpaamqqKiQidPnvS32+12JSYmBgRoAOiqwsLCFBoaqj/84Q/yer3+MNygvr5eXq9Xf/jDHxQaGspOdQC6PMMCcVxcnAoKCrRhwwbV1tbq2LFjeuGFF3Trrbfq5ptvVnl5ubZu3Sq3260DBw7owIEDmjp1qiQpKytLhYWF+vDDD1VTU6O1a9cqNDRUo0aNUlBQkKZOnap169apoqJCDodDzz33nDIyMhQfH6/k5GSlpaVp5cqVqq6uVmlpqTZt2qSsrCyj3goAaFdWq1WRkZFN6hsZGcl0CQBdnsXXGhNqW+i9997TypUr9c9//lOhoaGaNGmS5s+fr7CwML333ntavny5SktLlZCQoIcfflhjxozxX7tlyxZt2LBBJ06cUFpampYuXepfQL62tlZPPvmk/vjHP6qurk6jR4/W0qVL/b8AvvzyS+Xk5Ojvf/+7IiIiNG3aND344INN/tC32+2SpLS0tFZ+RwCg7Xm9Xv3oRz8KOPfjH/9Yffv21RdffKH33nsvoO39998nFAPodJqT1wwNxJ0VgRhAZ3bmzBmNHDnSf2yz2VRXV6e6ujoFBwcrODhYLpfL3/7OO+/wzASATqc5ea1DbswBAGg7Z8+e9X9vsVgajf5eeI411wF0dQRiADAZr9fr//6qq65SXFyc6urqJEl1dXWKi4vTVVddZVB1AND+OtSyawCAtnf+rnQffPCBrFZrwBzi999/X2VlZf4+zB8G0NURiAHAZGJiYgKOQ0ND9f777+u9996T1WpVaGhowBziC/sDQFfDlAkAMJkL1x12uVz+aRRerzcgDEtfr9wDAF0ZgRgATCYoKKhZ/UNDQ9uoEgDoGAjEAGAy1dXVzep/+vTpNqoEADoGAjEAmExERESz+kdFRbVRJQDQMRCIAcBkampqGp1rWEniYitKXKw/AHQlBGIAMBmHwxFwbLFY1LBpqc/naxSKT5061W61AYARCMQAYDIXPiTn8/kUERGhvn37KiIiwh+Ov6k/AHQ1rEMMACbTvXt3//cN2zRXV1f7H7azWq3y+Xz+YNytWzdD6gSA9kIgBgCTsVr/74+D5wffBudv7SyxUx2Aro8pEwBgMhcGXgAwOwIxAJiMx+NpVn+3291GlQBAx0AgBgCTYR1iAAhEIAYAk2nuznMsuwagqyMQA4DJ2Ww2BQUFSZKCgoJks9kMrggA2heBGABM5sIpEC6XK2BjDpfLFdAeHR3dbrUBgBEIxABgMg3rDUtSZGSkwsPD/StPeL1ehYeHKzIy0t+nuVMsAKCzYR1iADCZsLAw//dnzpyRJPXu3Vs9e/ZUVVWVKioqvrE/AHRFBGIAMJnzd6prUFFR0SgINwgPD2/rkgDAUEyZAACTsVqtiouL8x9fuBPd+cdxcXHsVAegyyMQA4DJeL3egKXULty6+fzjU6dONWoHgK6GQAwAJuN2u1VXV9ekvnV1dY1WnQCAroZADAAmExIS0qz+PFQHoKsjEAOAybjdbv/34eHh/k05GgQFBQU8SMcIMYCujlUmAMBkzp8uce7cuUbt9fX1Aecb1igGgK6KEWIAMJmamppG56xWa8DX8zFCDKCrIxADgMlcGHptNltAILbZbAHtLLsGoKsjEAOAyVxso42GpdUutsTa+ds4A0BXRCAGAJO5cEc6l8sVEIgvnCJRVlbWbrUBgBEIxABgMrGxsY3ONTw4d7EH6OLj49u8JgAwEoEYAEzmwjnC3yU4mAWJAHRtBGIAMJnmbrTR3AANAJ0NgRgATMbj8TQ6FxISoh49elx0F7vzN/IAgK6Iv4MBgMlcbBk1j8cjh8Nx0f7N3eoZADobRogBwGSqqqqa1b+ysrKNKgGAjoFADAAmExER0az+rEMMoKsjEAOAyYSGhjY6FxERob59+140LAcFBbVHWQBgGOYQA4DJXDgnuFu3bqqurlZ1dbX/uKamxt/e3FUpAKCzYYQYAEzm5MmTAcc1NTUKDQ1Vz549FRoaGhCGJcnpdLZjdQDQ/gjEAGAyDSPB56utrVVVVZVqa2sbtZ09e7Y9ygIAwxCIAcBkLtx57sI5wt91DABdDYEYAEzmkksuCTiur6//1uML+wNAV0MgBgCTcblczep/sSkWANCVEIgBwGSioqKa1T86OrqNKgGAjoFADAAmY7U276P/Yls9A0BXQiAGAJM5deqU//ugoKBGAdlqtQY8SMeUCQBdHYEYAEymsrLS/319fb28Xm9Au9frDXiw7vz+ANAVEYgBwGTi4+Ob1Z9VJgB0dR0mED/xxBMaNGiQ//jgwYOaMmWKhgwZohtvvFFvvPFGQP/Nmzdr7NixGjJkiLKysnT48GF/m9vtVm5urkaMGKFhw4Zp7ty5cjgc/vby8nLde++9GjZsmEaPHq0VK1Y0GiEBgK7KZrM1qz/rEAPo6jpEIC4uLtbrr7/uP66srNTs2bM1bdo0HTx4UIsWLVJOTo7sdrskad++fVqzZo2eeeYZvfvuuxo9erRmzZqlc+fOSZJWrVqloqIiFRQU6K233pLP59Ojjz7qv/+cOXPUq1cv7d27V5s2bdLevXv18ssvt++LBgCDhIWFNat/cwM0AHQ2hgdir9erJUuWKDs7239ux44d6tevn6ZMmaKwsDANHz5c1113nbZu3SpJKigo0OTJk5Weni6bzaa7775bkvT222+rrq5O27Zt0+zZs9W7d2/FxMRo3rx52r9/v7766ivZ7XYdOXJECxYsUGRkpPr166fs7GwVFBQY8fIBoN3V1NQ0q39z1y0GgM4m+Lu7tK3f//73CgsL0/jx4/X8889LkoqKipScnBzQLzk5WTt37vS3jxs3zt9mtVqVlJQku92upKQknTlzRikpKf72AQMGyGazqaioSJWVlUpISAhYVzMlJUXHjh1TdXW1IiIimlS3z+fzj0gDQGfS3Ifkjh8/3ux5xwBgNJ/P1+RlIw0NxMePH9eaNWv0yiuvBJx3Op3q1atXwLmYmBj/PGCn09loofjo6Gg5HA45nU5JjReej4qK8rdf2NZwL4fD0eRA7PF4VFxc3KS+ANCRlJWVBRxbLBb5fL5vPD58+HCjz2QA6AxCQ0Ob1M/QQPzkk09q8uTJSkxMbPQB/V3O/7Bubvt3XdsUISEhSkxM/N73AYD2Fh4eHnB84WfihcdJSUkEYgCdztGjR5vc17BAfPDgQX3wwQd68803G7X16NHDP9LbwOFwKDY29hvbnU6nrrjiCn8fp9Op7t27+9tPnTqluLg41dfXX/Rai8Xiv7YpLBZLo18qANAZnL/GcFPU1dXxeQeg02nOLpuGPVT3xhtv6MSJExo9erSGDRumyZMnS5KGDRumgQMHBiyjJn39J7v09HRJUmpqqoqKivxt9fX1+vjjj5Wenq6+ffsqOjo6oL2kpES1tbVKTU1VamqqKioqdPLkSX+73W5XYmJiQIAGgK6qW7duzerPKhMAujrDAvEjjzyit956S6+//rpef/11bdiwQZL0+uuva/z48SovL9fWrVvldrt14MABHThwQFOnTpUkZWVlqbCwUB9++KFqamq0du1ahYaGatSoUQoKCtLUqVO1bt06VVRUyOFw6LnnnlNGRobi4+OVnJystLQ0rVy5UtXV1SotLdWmTZuUlZVl1FsBAO0qISGhWf179+7dRpUAQMdg2JSJ6OjogAfj6urqJEmXXnqpJGn9+vVavny5HnvsMSUkJGjFihUaPHiwJGnEiBF66KGHNG/ePJ04cUJpaWnasGGDfxRj7ty5Onv2rG6++WbV1dVp9OjRWrp0qf9nrV69Wjk5ObrmmmsUERGhadOmafr06e30ygHAWB6Pp1n93W63goMNX5QIANqMxdcaT5iZTMMGIWlpaQZXAgDNV1lZqczMzCb337Nnj+Li4tqwIgBofc3Ja4ZvzAEAaF/NedBE+npVHQDoygjEAGAyF660812OHz/eNoUAQAdBIAYAk7nwITmr1fqtx3369GnzmgDASARiADCZ6urqgGOv1/utx6dPn27zmgDASARiADAZl8vVrP5ut7uNKgGAjoFADAAm06NHj2b1P3+JTADoigjEAGAyzd2prrn9AaCzIRADgMk0d5WJ5vYHgM6GQAwAJtOwM2hTXfiQHQB0NQRiADCZC5dVa+3+ANDZ8CkHACYTFhYWcHzhusQXHl/YHwC6GgIxAJjMhcuoVVRUfOtxc5dpA4DOhkAMACbT3DnEPp+vjSoBgI6BQAwAJtPch+Rqa2vbqBIA6BgIxABgMpdcckmz+vfq1auNKgGAjoFADAAm4/F4mtWfrZsBdHUEYgAwmVOnTjWr/7lz59qoEgDoGAjEAGAyDoejTfsDQGdDIAYAk+nevXvAcbdu3b71ODw8vM1rAgAjEYgBwGT69OkTcFxTU/Otxxdu1AEAXU2LAnFdXZ3+8Ic/+I8PHDig2bNna+XKlSzPAwAAgE6lRYH42Wef1aZNmyRJ//73vzVnzhxFRETob3/7m5555plWLRAA0Lqqqqqa1b+ysrKNKgGAjqFFgXjnzp1at26dJGnHjh1KT0/XM888ozVr1mjfvn2tWiAAoHX17NmzWf2bu24xAHQ2LQrEp0+f1mWXXSZJevfdd3X99ddL+nrx9pMnT7ZedQAAAEAba1Eg7tGjh8rKylRVVaUPPvhA/+///T9JUkVFBU8jA0AHd7EpE0OHDtW4ceM0dOjQRm1MmQDQ1QW35KKJEydq2rRpCgoK0pAhQzRgwACdPXtWCxcu1KhRo1q5RABAa4qMjGx07ssvv1RQUJC+/PLLRm2xsbHtURYAGKZFgXju3LlKTEzU6dOnddNNN0mSQkJCdNlll2nhwoWtWiAAoHVVVFT4v7/zzjtVUFCg8vJylZeXS/p6neJbb71VGzdulCSVlZVpwIABhtQKAO2hRYFYksaNGyfp6yXYJCk0NFTLli1rnaoAAG3m/I03fv/732vnzp0KCwtTVVWVLr30Up07d06ZmZn+PhcbUQaArqRFgdjr9erFF19UYWGhjh8/rn/84x+qqanRU089pUWLFik0NLS16wRggLKyMp05c8boMtDKTpw44f/+3LlzGjlypHr27KlLLrlElZWVjeYYl5aWBlyDriEyMrLRJi2AWbUoEK9Zs0avvfaafvrTn+r555+X9PWH6ocffqgXXnhBP//5z1uzRgAGcDgcmjhxorxer9GloB1UVVV94/rEDzzwQDtXg/YQFBSk3bt3q0ePHkaXAhjO4vP5fM296LrrrtOLL76o5ORkpaen66OPPpIkffrpp7rjjjv0zjvvtHqhHYndbpckpaWlGVwJ0LYYIe667r//fp0+fdp/HBYWJrfb7f/aIDo6Wv/93/9tRIloY4wQo6trTl5r0QjxyZMnlZyc3Oj8ZZddplOnTrXklgA6IH5Zdl2LFi0KeAi6IQSfH4Yl6Re/+IWSkpLatTYAaG8tWof4Bz/4gYqLiyVJ5w8wv/vuu83eAQkA0P4yMjJ06623fmufW2+9VRkZGe1UEQAYp0UjxBMmTNADDzygu+66Sz6fT7t379bhw4f1u9/9TjNnzmztGgEAbWDhwoUaMmSIXnzxRX3xxRf+83379tWDDz5IGAZgGi2aQ+zz+bRmzRrl5+f7p0jEx8dr5syZmjlzpqzWFg08dxrMIQbQ1djtdv30pz/VK6+8opSUFKPLAYDvrc3nEFssFs2dO1dz5szRyZMnFRYWpoiIiJbcCgDQAQQHf/3roKsPaADAxbQoEL/33nvf2Ga1WtW7d2/94Ac/aHFRAAAAQHtpUSC+/fbbZbFYJP3fQ3XnH1ssFqWkpGj16tUEYwAAAHRoLfrb2G9+8xslJibqF7/4hV577TUVFhZq8eLFSkpK0q9+9Sv9+te/Vvfu3fX000+3dr0AAABAq2rRCPHq1av1xBNPBExSHjx4sK688kqtXr1aL730kgYOHKiJEye2Vp0AAABAm2jRCPHHH3+sQYMGNTo/ePBgvf/++5KkmJgYnTt37vtVBwAAALSxFgXi+Ph4vfTSS6qvr/ef8/l82rx5s3+1iY0bN6pfv36tUiQAAADQVlo0ZeJnP/uZHnnkEb388svq3bu3QkJC9O9//1sOh0OLFy+Wx+PRiy++qNWrV7d2vQAAAECralEgHj9+vIYOHao//vGP+uqrr+T1evWf//mfysjI0IABAyRJ+/btU3x8fKsWCwAAALS2FgXi3/zmN8rOztY999zzjX0IwwAAAOgMWjSHeO3atTwwBwAAgC6hRYF4wYIFWrZsmY4cOaKzZ8+qtrY24D8AAACgs2jRlIlnnnlGtbW1KiwsvGh7cXHx96kJAAAAaDctCsS/+MUvWrsOAAAAwBAtCsSTJk36xrYXXnihxcUAAAAA7a1FgViSSktLZbfb5Xa7/ef+/e9/6+WXX9bPfvazVikOAAAAaGstCsQ7duzQwoUL5fV6ZbFY5PP5JEnR0dG64447WrVAAAAAoC21aJWJ9evXa8mSJfrHP/6hkJAQffzxx8rPz9eQIUM0derUJt/nyJEj+ulPf6qhQ4dq+PDhmjdvnqqqqiRJBw8e1JQpUzRkyBDdeOONeuONNwKu3bx5s8aOHashQ4YoKytLhw8f9re53W7l5uZqxIgRGjZsmObOnSuHw+FvLy8v17333qthw4Zp9OjRWrFihbxeb0veCgAAAHRyLQrE5eXlmjp1qkJDQ7++idWqoUOH6t5771Vubm6T7lFbW6s777xTP/nJT3Tw4EG9+eabOnHihJYuXarKykrNnj1b06ZN08GDB7Vo0SLl5OTIbrdL+noXvDVr1uiZZ57Ru+++q9GjR2vWrFn+tZFXrVqloqIiFRQU6K233pLP59Ojjz7q/9lz5sxRr169tHfvXm3atEl79+7Vyy+/3JK3AgAAAJ1ciwJxaGioqqurJUnh4eGqrKyUJF155ZX68MMPm3SPmpoazZ8/X/fdd59CQ0MVGxurjIwMffLJJ9qxY4f69eunKVOmKCwsTMOHD9d1112nrVu3SpIKCgo0efJkpaeny2az6e6775Ykvf3226qrq9O2bds0e/Zs9e7dWzExMZo3b57279+vr776Sna7XUeOHNGCBQsUGRmpfv36KTs7WwUFBS15KwAAANDJtWgO8bXXXqt7771Xv/71r3XllVfqySef1J133qlDhw4pMjKySfeIjo7WLbfc4j/+9NNPtX37dt1www0qKipScnJyQP/k5GTt3LlTklRUVKRx48b526xWq5KSkmS325WUlKQzZ84oJSXF3z5gwADZbDYVFRWpsrJSCQkJio6O9renpKTo2LFjqq6uVkRERJPq9/l87NYHoMtwuVz+r3y2AegKfD6fLBZLk/q2eB3iRYsWKTg4WPPmzdPMmTO1c+dOBQcHa8mSJc26V3l5ucaOHau6ujpNnTpVc+fO1T333KNevXoF9IuJifHPA3Y6nQGBVvo6YDscDjmdTklSVFRUQHtUVJS//cK2hns5HI4mB2KPx8MGJAC6jM8//1ySdOzYMZ6pANBlNEzv/S4tCsRxcXFat26dpK9Hbv/85z+rtLRUCQkJio+Pb9a9EhISZLfb9fnnnys3N1f/9V//1aTrGla2aEn7d13bFCEhIUpMTPze9wGAjsBq/XoGXf/+/TVo0CCDqwGA7+/o0aNN7tvidYjr6upUWVnpX4c4KipKZ86c0ZkzZ9S/f/9m3ctisahfv36aP3++pk2bppEjR/pHehs4HA7FxsZKknr06NGo3el06oorrvD3cTqd6t69u7/91KlTiouLU319/UWvtVgs/mubWnN4eHjTXyQAdGA2m83/lc82AF1BU6dLSC0MxHv37tWiRYt0+vTpgPMNczWaMpXg4MGDWrp0qXbu3OkfmWj4euWVV+qtt94K6H/48GGlp6dLklJTU1VUVOTfMa++vl4ff/yxpkyZor59+yo6OlpFRUVKSEiQJJWUlKi2tlapqamqrKxURUWFTp486Q/AdrtdiYmJAQEaAAAA5tCiQPz4449rxIgRGj9+vH9UoblSU1NVXV2tFStWaO7cuaqpqdGaNWv0ox/9SFlZWdq4caO2bt2qCRMm6K9//asOHDjgXwkiKytLDz30kG666SYNGjRIv/71rxUaGqpRo0YpKChIU6dO1bp165SWliabzabnnntOGRkZio+PV3x8vNLS0rRy5Uo9+uij+uqrr7Rp0ybdeeedLXodAAAA6NxaFIhPnjypxx9/vMkTlS8mMjJSGzdu1PLly3X11VcrPDxcV199tR5//HHFxcVp/fr1Wr58uR577DElJCRoxYoVGjx4sCRpxIgReuihhzRv3jydOHFCaWlp2rBhgz+cz507V2fPntXNN9+suro6jR49WkuXLvX/7NWrVysnJ0fXXHONIiIiNG3aNE2fPr3FrwUAAACdl8XXgifMpkyZorVr16pnz55tUVOH17BBSFpamsGVAEDrKC4u1owZM5Sfn6+kpCSjywGA7605ea1FG3MsXbpUK1as0NGjR+V2u1VbWxvwHwAAANBZNHnKxODBgwOe1vP5fNqxY8dF+7I+LwAAADqLJgfiJ554olEgrq2tVVhYmCTpzJkzioiIaNYSFwAAAIDRmhyIJ0+e7P/+3//+t2bNmqXZs2crMzNTkrRx40Zt3LhR69evb/0qAQAAgDbSojnETz75pPr3768hQ4b4z02YMEGpqal64oknWq04AAAAoK21aNm19957T/v27QvYzSg+Pl45OTm67rrrWq04AAAAoK21aITY5/PJ4/E0On/27FnV19d/76IAAACA9tKiQDxixAgtXLhQR44cUXV1tU6fPq0PPvhADz/8sEaNGtXKJQIAAABtp0VTJh599FE98MADmjhxYsCqEj/60Y+0ZMmSVisOAAAAaGstCsSxsbH63e9+pyNHjujzzz9XUFCQ+vXrp8TExNauDwAAAGhTLQrEDQYPHqzBgwe3Vi0AAABAu2vRHGIAAACgqyAQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUzM0EJeXl+uBBx7QsGHDNHz4cD3yyCM6ffq0JKm4uFi33Xabhg4dqjFjxmjjxo0B1/7pT3/S+PHj9cMf/lCTJ0/WO++842/zer1atWqVrr/+ev34xz/WXXfdpS+++MLf7nQ6NW/ePA0fPlzXXnutFi1aJJfL1T4vGgAAAB2KoYF41qxZioqK0r59+/Taa6/pk08+0dNPPy2Xy6X77rtPV199tf7yl79o1apVWr9+vXbv3i3p67C8cOFCLViwQH/961+VnZ2tBx98UF9++aUkKT8/Xzt27NCGDRv09ttvq1+/fnrggQfk8/kkSTk5OaqpqdGbb76pV199VaWlpXr22WcNex8AAABgHMMC8enTp5WamqqHH35Y3bt316WXXqpJkybp0KFD2r9/vzwej+6//36Fh4crJSVFt9xyiwoKCiRJW7du1ciRIzVy5EiFhYVpwoQJGjhwoN544w1JUkFBgbKzszVgwABFRERo/vz5Ki0t1UcffaTjx49r7969mj9/vmJjY9WrVy/Nnj1br776qjwej1FvBwAAAAwSbNQPjoqK0pNPPhlwrqKiQpdccomKioo0aNAgBQUF+duSk5O1detWSVJRUZFGjhwZcG1ycrLsdrtcLpeOHj2q5ORkf1tERIQuu+wy2e12nTlzRkFBQRo0aJC/PSUlRefOndOnn34acP7b+Hw+nTt3rtmvGwA6ooZpYy6Xi882AF2Cz+eTxWJpUl/DAvGF7Ha7fvvb32rt2rXauXOnoqKiAtpjYmLkdDrl9XrldDoVHR0d0B4dHa2jR4/q1KlT8vl8F213OByKiYlRREREwBvU0NfhcDS5Xo/Ho+Li4ua+TADokD7//HNJ0rFjx+T1eg2uBgBaR2hoaJP6dYhA/P777+v+++/Xww8/rOHDh2vnzp0X7Xd+iG2YD/xNvq39u65tipCQECUmJn7v+wBAR2C1fj2Drn///k3+SxkAdGRHjx5tcl/DA/G+ffv085//XDk5OZo4caIkKTY2Vp999llAP6fTqZiYGFmtVvXo0UNOp7NRe2xsrL/Pxdrj4uIUGxur6upq1dfX+6dkNPSNi4trct0Wi0Xh4eHNeakA0GHZbDb/Vz7bAHQFTZ0uIRm8ysT//u//auHChXrhhRf8YViSUlNT9c9//lN1dXX+c3a7Xenp6f72w4cPB9yroT0sLExXXHGFioqK/G2nT5/Wv/71L1155ZVKSkqSz+fTkSNHAq6NiopS//792+iVAgAAoKMyLBDX1dVp8eLFWrBgga699tqAtpEjRyoiIkJr165VTU2NPvroI23btk1ZWVmSpKlTp+rdd9/V/v375Xa7tW3bNn322WeaMGGCJCkrK0ubN29WaWmpqqur9eyzzyopKUlpaWmKjY3V2LFj9fzzz+vkyZP68ssv9ctf/lJTpkxRcLDhA+YAAABoZ4YlwA8//FClpaVavny5li9fHtC2a9curVu3TkuWLNGGDRsUHx+v+fPna9SoUZKkgQMH6tlnn9WTTz6p8vJyJSYmav369erZs6ckadq0aaqqqtLtt9+us2fPatiwYXrxxRf998/Ly9OSJUt0/fXXKyQkRDfddJPmz5/fbq8dAAAAHYfF1xpPmJmM3W6XJKWlpRlcCQC0juLiYs2YMUP5+flKSkoyuhwA+N6ak9cMnUMMAAAAGI1ADAAAAFMjEAMAAMDUCMQAAAAwNQIxAAAATI1ADAAAAFMjEAMAAMDUCMQAAAAwNQIxAAAATI1ADAAAAFMjEAMAAMDUCMQAAAAwNQIxAAAATC3Y6ALQuVRUVMjpdBpdBoBWduzYsYCvALqWmJgY9e7d2+gyOiwCMZqsoqJCkyZPVq3bbXQpANrI4sWLjS4BQBsIDQvT9tdeIxR/AwIxmszpdKrW7dbJxGtU1y3a6HIAAEATBNecUuzR/5HT6SQQfwMCMZqtrlu0PBFxRpcBAADQKnioDgAAAKZGIAYAAICpEYgBAABgagRiAAAAmBqBGAAAAKZGIAYAAICpEYgBAABgagRiAAAAmBqBGAAAAKZGIAYAAICpEYgBAABgagRiAAAAmBqBGAAAAKZGIAYAAICpEYgBAABgagRiAAAAmBqBGAAAAKZGIAYAAICpEYgBAABgagRiAAAAmBqBGAAAAKZGIAYAAICpEYgBAABgagRiAAAAmBqBGAAAAKZGIAYAAICpEYgBAABgagRiAAAAmBqBGAAAAKZGIAYAAICpEYgBAABgagRiAAAAmBqBGAAAAKZGIAYAAICpGR6I//KXv2j48OGaP39+o7Y//elPGj9+vH74wx9q8uTJeuedd/xtXq9Xq1at0vXXX68f//jHuuuuu/TFF1/4251Op+bNm6fhw4fr2muv1aJFi+RyufztxcXFuu222zR06FCNGTNGGzdubNsXCgAAgA7J0ED80ksvafny5brssssatRUXF2vhwoVasGCB/vrXvyo7O1sPPvigvvzyS0lSfn6+duzYoQ0bNujtt99Wv3799MADD8jn80mScnJyVFNTozfffFOvvvqqSktL9eyzz0qSXC6X7rvvPl199dX6y1/+olWrVmn9+vXavXt3+714AAAAdAiGBuKwsDBt27btooF469atGjlypEaOHKmwsDBNmDBBAwcO1BtvvCFJKigoUHZ2tgYMGKCIiAjNnz9fpaWl+uijj3T8+HHt3btX8+fPV2xsrHr16qXZs2fr1Vdflcfj0f79++XxeHT//fcrPDxcKSkpuuWWW1RQUNDebwEAAAAMFmzkD7/jjju+sa2oqEgjR44MOJecnCy73S6Xy6WjR48qOTnZ3xYREaHLLrtMdrtdZ86cUVBQkAYNGuRvT0lJ0blz5/Tpp5+qqKhIgwYNUlBQUMC9t27d2uTafT6fzp071+T+XcH5U04AAEDn4nK5TJVdfD6fLBZLk/oaGoi/jdPpVHR0dMC56OhoHT16VKdOnZLP57tou8PhUExMjCIiIgLehIa+DodDTqdTUVFRAdfGxMTI6XTK6/XKav3ugXOPx6Pi4uKWvrxO6fPPPze6BAAA0ELHjh2T1+s1uox2FRoa2qR+HTYQS/LPB25J+3ddezFN/VeEJIWEhCgxMbHZP6Mza8o/FAAAQMfUv3//gL+ed3VHjx5tct8OG4h79Oghp9MZcM7pdCo2NlYxMTGyWq0XbY+Li1NsbKyqq6tVX1/vnxbR0Leh/bPPPmt0bcN9m8JisSg8PLwlL63TstlsRpcAAABayGazmSq7NGegs8MG4tTUVB0+fDjgnN1u14033qiwsDBdccUVKioq0k9+8hNJ0unTp/Wvf/1LV155pRISEuTz+XTkyBGlpKT4r42KilL//v2Vmpqq3/3ud6qrq1NwcLC/PT09vX1fZCcVXHPK6BIAAEAT8Xv7u3XYQDx16lRNmTJF+/fv13/8x39ox44d+uyzzzRhwgRJUlZWljZs2KARI0aoV69eevbZZ5WUlKS0tDRJ0tixY/X888/r6aefVm1trX75y19qypQpCg4O1siRIxUREaG1a9fq7rvvVklJibZt26YVK1YY+ZI7jdij/2N0CQAAAK3G0EDcEF7r6uokSXv37pX09WjtwIED9eyzz+rJJ59UeXm5EhMTtX79evXs2VOSNG3aNFVVVen222/X2bNnNWzYML344ov+e+fl5WnJkiW6/vrrFRISoptuusm/+UdoaKjWrVunJUuWaMOGDYqPj9f8+fM1atSodnz1ndfJxGtU1y36uzsCAADDBdecYjDrO1h8LXn6zOTsdruk/wv0ZlFcXKwZM2aoMm2cPBFxRpcDAACaIKT6hC6x/0n5+flKSkoyupx205y8xrIBAAAAMDUCMQAAAEyNQAwAAABTIxADAADA1AjEAAAAMDUCMQAAAEyNQAwAAABTIxADAADA1AjEAAAAMDUCMQAAAEyNQAwAAABTIxADAADA1AjEAAAAMDUCMQAAAEyNQAwAAABTIxADAADA1AjEAAAAMDUCMQAAAEyNQAwAAABTIxADAADA1AjEAAAAMDUCMQAAAEyNQAwAAABTIxADAADA1AjEAAAAMLVgowtA5xNcc8roEgAAQBPxe/u7EYjRZDExMQoNC1Ps0f8xuhQAANAMoWFhiomJMbqMDotAjCbr3bu3tr/2mpxOp9GlAGhlx44d0+LFi7V8+XL179/f6HIAtLKYmBj17t3b6DI6LAIxmqV37978DwV0Yf3791dSUpLRZQBAu+KhOgAAAJgagRgAAACmRiAGAACAqRGIAQAAYGoEYgAAAJgagRgAAACmRiAGAACAqRGIAQAAYGoEYgAAAJgagRgAAACmRiAGAACAqRGIAQAAYGoEYgAAAJgagRgAAACmRiAGAACAqRGIAQAAYGoEYgAAAJgagRgAAACmRiAGAACAqQUbXQCAjqusrExnzpwxugy0g2PHjgV8RdcXGRmpPn36GF0G0CEQiAFclMPh0MSJE+X1eo0uBe1o8eLFRpeAdhIUFKTdu3erR48eRpcCGI5ADOCievToocLCQkaIgS4qMjKSMAz8/wjEAL4Rf04FAJiBaR+qKy8v17333qthw4Zp9OjRWrFiBX8aBgAAMCHTjhDPmTNHKSkp2rt3r06cOKH77rtP8fHxmjlzptGlAQAAoB2ZcoTYbrfryJEjWrBggSIjI9WvXz9lZ2eroKDA6NIAAADQzkw5QlxUVKSEhARFR0f7z6WkpOjYsWOqrq5WRETEd97D5/Pp3LlzbVkmAAAAWsjn88lisTSprykDsdPpVFRUVMC5hnDscDiaFIg9Ho+Ki4vbpD4AAAB8f6GhoU3qZ8pALH39r4bvIyQkRImJia1UDQAAAFrT0aNHm9zXlIE4NjZWTqcz4JzT6ZTFYlFsbGyT7mGxWBQeHt4G1QEAAOD7aup0CcmkD9WlpqaqoqJCJ0+e9J+z2+1KTExU9+7dDawMAAAA7c2UgTg5OVlpaWlauXKlqqurVVpaqk2bNikrK8vo0gAAANDOTBmIJWn16tWqrKzUNddcozvuuEMTJ07U9OnTjS4LAAAA7cyUc4gl6dJLL9VLL71kdBkAAAAwmGlHiAEAAACJQAwAAACTIxADAADA1AjEAAAAMDXTPlT3fXg8Hvl8PtntdqNLAQAAwEXU1tY2eXMOAnELNGfnEwAAALQ/i8XS5Mxm8fl8vjauBwAAAOiwmEMMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABMjUAMAAAAUyMQAwAAwNQIxAAAADA1AjEAAABM7f8Dgas8IyqZ8MwAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.boxplot(y= 'charges', data=data)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "45Wih_yAKpDM"
},
"source": [
"Utilisation de pycaret"
]
},
{
"cell_type": "code",
"execution_count": 176,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0QJ9ahKpWq5C",
"outputId": "432cf733-fff7-4b2c-9fc0-e9556c535f28"
},
"outputs": [
{
"data": {
"text/plain": [
"11848.22951"
]
},
"execution_count": 176,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## gestion de charges\n",
"\n",
"\n",
"Q1 = data['charges'].quantile(0.25)\n",
"Q3 = data['charges'].quantile(0.75)\n",
"IQR = Q3 - Q1\n",
"IQR"
]
},
{
"cell_type": "code",
"execution_count": 177,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OglcKiQNcQiA",
"outputId": "b170fe74-1356-4833-ff8b-6888147c7d3e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"les results sont 34358.841975 -13034.076065\n"
]
}
],
"source": [
"k = 1.5\n",
"lower_limit = Q1 - k * IQR\n",
"upper_limit = Q3 + k * IQR\n",
"print ('les results sont', upper_limit, lower_limit)"
]
},
{
"cell_type": "code",
"execution_count": 178,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "L0EHHK1ycQoO",
"outputId": "4a081e5e-b6e1-462d-ad46-fa2f81602d09"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Nombre d'outliers dans la colonne 'charges': 138\n"
]
}
],
"source": [
"outliers = data[(data['charges'] < lower_limit) | (data['charges'] > upper_limit)]\n",
"num_outliers = len(outliers)\n",
"print(\"Nombre d'outliers dans la colonne 'charges':\", num_outliers)"
]
},
{
"cell_type": "code",
"execution_count": 179,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "yugyBA9BcQuW",
"outputId": "e3a6b01c-d862-429c-92c4-403214809e8d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Nombre d'outliers : 138\n"
]
}
],
"source": [
"# Sélectionner les outliers contigus dans la première plage\n",
"outliers = data[(data['charges'] < lower_limit) | (data['charges'] > upper_limit)]\n",
"len(outliers)\n",
"\n",
"\n",
"# Afficher la taille des deux groupes\n",
"print(\"Nombre d'outliers :\", len(outliers))\n",
"\n",
"\n",
"# Supprimer les outliers non contigus du DataFrame principal\n",
"data.drop(outliers.index, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 180,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 480
},
"id": "9X95AXZScQy-",
"outputId": "4052ccf8-8b03-419a-9a17-09c1111aff29"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 180,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAG9CAYAAAASkGAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/tUlEQVR4nO3de3RTZb7/8U/SJiml13DpMC0LeqhAb3AEtRxkCYiAV0Y4gHS8ASpyUaBHljhyVXE4KIgKLi7OiKLo6QEBBcULoo4IjgyCE2rRaUGEWijShLa0TVOS3x/8mkMEtZS2Kd3v11pdbfb32eG7u5bxw8Ozn23y+Xw+AQAAAAZlDnYDAAAAQDARiAEAAGBoBGIAAAAYGoEYAAAAhkYgBgAAgKERiAEAAGBoBGIAAAAYWmiwG7gU7dmzRz6fTxaLJditAAAA4Dw8Ho9MJpMuv/zy3xxLIK4Dn88nnmcCAADQdF1IViMQ10HNzHB6enqQOwEAAMD5OByOWo9lDTEAAAAMjUAMAAAAQyMQAwAAwNAIxAAAADA0AjEAAAAMjUAMAAAAQwtqIN6/f7/uvvtu9ezZU71799bUqVN1/Phx/f3vf1eXLl2Unp4e8LVlyxb/uatXr9bgwYPVo0cPZWZmat++ff6a2+3W7Nmzdc011ygjI0OTJ0+W0+n01wsKCjRu3DhlZGSof//+evrpp+X1ehv12gEAANA0BC0QV1VVaezYsbrqqqu0c+dObd68WSdOnNDcuXMlSfHx8XI4HAFfN9xwgyRp27ZtWrJkiZ566int2LFD/fv31/jx41VeXi5JWrx4sXJycpSdna33339fPp9Pf/rTn/x/9oMPPqi4uDht3bpVq1at0tatW/XKK680+u8AAAAAwRe0B3NUVFQoKytLQ4cOVWhoqOx2uwYOHKjXXnvtN8/Nzs7WsGHD1L17d0nSvffeq9WrV+vjjz/W4MGDtW7dOi1YsEDt2rWTJE2dOlU33XSTjh07pqKiIu3fv1+rVq1SZGSkIiMjNXr0aL3yyisaM2ZMrfv3+Xz+AA4AAICmxefzyWQy1Wps0AJxdHS0RowY4X994MABbdiwwT8LfOrUKU2aNEn/+Mc/ZLVaNXbsWI0ePVomk0k5OTm68cYb/eeazWYlJyfL4XAoOTlZpaWlSk1N9dc7deqksLAw5eTkqKioSPHx8YqOjvbXU1NTdfDgQZWVlSkiIqJW/Xs8HuXm5l7srwEAAAANxGq11mpc0B/dXFBQoMGDB6u6ulojR47U5MmTtX//fnXu3Fl33323Fi9erC+//FJTpkxRZGSkhg8fLpfLFRBopTMB2+l0yuVySZKioqIC6lFRUf76z2s17+V0OmsdiC0Wi5KSkup41QAAAGhIeXl5tR4b9EBcs1b40KFDmj17th5++GEtWrRIr776qn9Mnz59NGrUKK1fv17Dhw+XdGYa/Nf8Wv23zq0Nk8mk8PDwi34fAGgKvF6v3G63bDabzGY2IAJw6avtcgmpiWy7ZjKZ1LFjR2VlZWnz5s0qLi4+Z0x8fLyKiookSbGxsf6Z4Boul0t2u112u93/+mwnT55Uq1atZLfbz3uuyWTynwsARvHdd99pzpw5uvrqq/1fc+bM0XfffRfs1gCg0QQtEO/cuVODBw8O2O6sZlbi008/1euvvx4w/sCBA2rfvr0kKS0tTTk5Of7a6dOn9c0336h79+5q3769oqOjA+rfffedqqqqlJaWprS0NBUWFgaEbofDoaSkJLVs2bJBrhUAmqL33ntPt99+u7Zu3arTp09LOvN5unXrVt1+++167733gtwhADSOoAXitLQ0lZWV6emnn1ZFRYWKi4u1ZMkSXXHFFYqMjNSCBQu0fft2eTweff7553rzzTeVmZkpScrMzNTGjRu1d+9eVVRUaNmyZbJarerXr59CQkI0cuRILV++XIWFhXI6nXrmmWc0cOBAtW7dWikpKUpPT9eiRYtUVlam/Px8rVq1yv/eAGAE3333nWbOnPmLe7B7vV7NnDmTmWIAhmDy1ceC2jr69ttvNW/ePP3zn/9UeHi4evXqpUceeURxcXHKzs7WSy+9pMLCQrVu3VoTJkwI2JXi9ddf18qVK3XixAmlp6dr7ty56ty5s6QzexzPnz9f77zzjqqrq9W/f3/NnTtXkZGRkqSjR49q1qxZ+vLLLxUREaFRo0bpgQceqPVaE4fDIUlKT0+v598IADSOqVOn6m9/+5tMJpPi4uI0dOhQJSQk6MiRI9qwYYOOHTsmn8+nvn37avHixcFuFwAu2IXktaAG4ksVgRjApczr9eqqq66S1+vVjTfeqDlz5shkMqmkpERRUVHy+Xx67LHH9O6778psNmvXrl0XdHMKADQFF5LXgr7LBACgcVVUVMjr9SosLExXX321hg8frsOHD/vr7du31/jx4/XRRx/J7XaroqKCXXUANGsEYgAwmJp1w1arVTNmzFBISIiuuOIK/f73v9ePP/6oPXv2aMaMGYqMjJTb7Q5ytwDQ8AjEAGAwNTv6lJSUKDY2VuHh4frHP/7hr8fHx6u8vFxOpzNYLQJAoyIQA4DBtGjRwv+z0+lUSUmJrrzySiUmJurgwYP66quv/Nuw/Xw8ADRHBGIAMJifb7Vmt9vVo0cPxcbGKjY2Vt9//72OHz/ur/t8Pm6qA9CsEYgBwGBKSkoCXv/0009asWKF//XPw+/JkycVGxvbKL0BQDA0iUc3AwAaT82OESEhIZICZ4BNJpNqduOsqdfs4Q4AzRWBGAAMpry8XNKZxzTHxMQoISHBH4J9Pp8SEhIUExPjX0dcWloatF4BoDGwZAIADCYqKsr/s8vlUlhYmMaPH6+4uDgdO3ZMGzdulMvl8o+Jjo4OQpcA0HgIxABgcEVFRdq9e7c6dOigQ4cOqaioKNgtAUCjIhADgMGcfVNdbGysWrZsqV27dmnXrl2SpISEBJ06dcq/DzE31QFo7gjEAGAwERERkqSWLVvK6XTq5MmT6tmzp9q1a6fCwkLt2bNHXq9XLVu21KlTpwKWWABAc8RNdQBgMDU3y5WXl+vxxx9XfHy8du/erc2bN2v37t2Kj4/X448/7r/5rqqqKpjtAkCDIxADgMHYbDZZLBb5fD4tXbpUaWlpslqtkiSr1aq0tDQtXbpUPp9PFotFYWFhQe4YABoWgRgADMZsNuv666+X1WpVUVGRtmzZIo/HI0nyeDzasmWLioqKZLVadcMNN/CUOgDNHoEYAAyoT58+/qUQZrM5YB9is/nM/xqqqqp09dVXB61HAGgsBGIAMKB3331X0pkn09lsNv9T6UJCQmSz2fyzwlu2bAlajwDQWAjEAGAwXq9Xn332mcLCwgIe2fzz7zabTZ999pl/9hgAmiu2XQMAg6moqJDX65Xb7dZNN92kWbNmKSQkRG63W2FhYaqurtYTTzyhd955Rz6fTxUVFQoPDw922wDQYJghBgCDstlsmjVrliwWi8xms1q0aCGTySSLxaJZs2b5d54AgOaOQAwABmOz2SSdWTpRw+v1+meOa9QslWDbNQDNHUsmAMBgarZYq6qq0kMPPaTo6Gh99NFHqqysVFhYmAYMGCCXy+XfhcLtdqtFixbBbBkAGhSBGAAMxmazyWq1qqqqStu3b5fZbFbPnj3VsWNHff/999qyZYt/pthqtTJDDKDZIxADgMGYzWb16tVLf/vb3ySdCb179uzRrl27FBoaKqvVqsrKSknSf/zHf/BgDgDNHmuIAcCAakJunz59dN111wXsQ3zdddf5H8hBGAZgBMwQA4DBeL1e/f3vf9d1112nTz75RK1bt9aYMWPUtm1bFRUVaePGjfrpp5903XXXafv27fL5fARjAM0agRgADMbtdquyslL9+/fXvffeq9dff12rVq2S2+2WzWbT4MGD9cc//lF5eXnaunWrKisruakOQLPGkgkAMBibzaawsDAdOXJEks55El3N64KCAoWFhXFTHYBmjxliADAYs9msgQMH6o033tDKlSvVtm1bjR07VgkJCTpy5Ig2btyod999V5GRkRo0aBDLJQA0ewRiADCgPn36aNOmTUpISFB2dnbAkog77rhDI0eOVEFBgf/mOgBozgjEAGBA27dvV0xMjAoLC/Wf//mfGjp0qOLj41VQUKANGzbo+PHjio6O1ueff66BAwcGu10AaFAEYgAwGK/Xqw8//FBjxoxR3759/TfV1TypbtCgQfrjH/+oTz/9VKtWrdKcOXNYNgGgWSMQA4DB1OwykZCQoM6dO2vu3LmaPXu23G63wsLC/OE3Ly9PlZWV7DIBoNljlwkAMJif7zJxtrN3nGCXCQBGwQwxABhMzS4TGzdu1NVXX63s7Gx9+OGH/iUTAwcO1G233aYNGzawywQAQyAQA4AB3X777XrnnXd05513Ki4uTmPGjPFvu7ZhwwZt3rxZJpNJf/zjH4PdKgA0OJZMAAAknfuADgAwCgIxABjQmjVrFBcXp9WrV+uqq67SqlWrNHPmTK1atUpXXXWVVq9erbZt2+r1118PdqsA0OBYMgEABnP2tmupqalKTU097y4TQ4cOZds1AIbADDEAGMzZ267VMJvNatGiRUDwjY+P92+7BgDNGYEYAAzm17ZdOxvbrgEwCgIxABjM2duueTweSVJ1dbWKi4tVXV0tSfJ4PGy7BsAwWEMMAAZ0++23a8uWLZowYYKKiooCZosTEhLUpk0b/fTTT2y7BsAQCMQAYECdO3fWFVdcoS+++OKc2pEjR3TkyBH16tVLnTt3DkJ3ANC4WDIBAAb04YcfBoThmmURZy+P+OKLL/Thhx82em8A0NgIxABgQE899ZQkqU2bNrrxxhtltVolSVarVTfeeKPatGkTMA4AmjOWTACAwVRXV+vEiROSpOLiYu3Zs0djx471P7p548aNKi4uliSdOHFCXq9XZjPzJwCar6B+wu3fv1933323evbsqd69e2vq1Kk6fvy4JGnnzp0aPny4evTooZtuuklvv/12wLmrV6/W4MGD1aNHD2VmZmrfvn3+mtvt1uzZs3XNNdcoIyNDkydPltPp9NcLCgo0btw4ZWRkqH///nr66afl9Xob56IBIMhqwq4k3XDDDdq4caPuu+8+3XDDDbrvvvu0ceNG3XDDDf4xLpcrCF0CQOMJWiCuqqrS2LFjddVVV2nnzp3avHmzTpw4oblz56qoqEgTJ07UqFGjtHPnTs2YMUOzZs2Sw+GQJG3btk1LlizRU089pR07dqh///4aP368ysvLJUmLFy9WTk6OsrOz9f7778vn8+lPf/qT/89+8MEHFRcXp61bt2rVqlXaunWrXnnllaD8HgAgWMxms2bNmiWLxRJw3GKxaNasWf5ZYZ/PF4z2AKDRBG3JREVFhbKysjR06FCFhobKbrdr4MCBeu2117Rp0yZ17NhRw4cPlyT17t1b1157rdauXav09HRlZ2dr2LBh6t69uyTp3nvv1erVq/Xxxx9r8ODBWrdunRYsWKB27dpJkqZOnaqbbrpJx44dU1FRkfbv369Vq1YpMjJSkZGRGj16tF555RWNGTOm1v37fD5/AAeAS0nNemGv16vS0tLzPnijsrLS/y9nVquVzzsAlxyfz1frfdSDFoijo6M1YsQI/+sDBw5ow4YNuuGGG5STk6OUlJSA8SkpKdqyZYskKScnRzfeeKO/ZjablZycLIfDoeTkZJWWlio1NdVf79Spk8LCwpSTk6OioiLFx8crOjraX09NTdXBgwdVVlamiIiIWvXv8XiUm5tbp2sHgGByu93+n2+77TY99thjslgs8ng8/u9z5szxj3E4HLLZbMFoFQAuSs0EwG8J+k11BQUFGjx4sKqrqzVy5EhNnjxZ9913n+Li4gLGxcTE+NcBu1yugEArnQnYTqfTv9YtKioqoB4VFeWv/7xW815Op7PWgdhisSgpKanW1wkATYXX6/UH3xMnTuiBBx6QyWTyz6acvUTCYrGoe/fuPK0OwCUnLy+v1mODHojj4+PlcDh06NAhzZ49Ww8//HCtzvutNW2/Vq+P9XAmk0nh4eEX/T4AEAzXX3+93n//fVVVVUn6v8/Fsz8frVarrr/+erVs2TIoPQLAxbiQv8g3iX10TCaTOnbsqKysLG3evFmhoaHn3NXsdDplt9slSbGxsefUXS6X7Ha7f8zP6ydPnlSrVq1kt9vPe67JZPKfCwDNXZ8+fVRVVaWoqCi1aNEioNaiRQtFRUWpqqpKV199dZA6BIDGE7RAvHPnTg0ePDhgu7OaO5q7desWsI2aJO3bt89/E11aWppycnL8tdOnT+ubb75R9+7d1b59e0VHRwfUv/vuO1VVVSktLU1paWkqLCwM2HbI4XAoKSmJWRAAhrF9+3aFh4erpKREVVVV6tmzpwYNGqSePXuqqqpKJSUlatGihT7//PNgtwoADS5ogTgtLU1lZWV6+umnVVFRoeLiYi1ZskRXXHGFMjMzVVBQoLVr18rtduvTTz/Vp59+qpEjR0qSMjMztXHjRu3du1cVFRVatmyZrFar+vXrp5CQEI0cOVLLly9XYWGhnE6nnnnmGQ0cOFCtW7dWSkqK0tPTtWjRIpWVlSk/P1+rVq1SZmZmsH4VANCovF6v3n//fVVWVqpr166y2WzavXu3PvjgA+3evVs2m01du3aV2+3We++9x7ZrAJo9ky+In3Tffvut5s2bp3/+858KDw9Xr1699MgjjyguLk67du3SvHnzlJ+fr/j4eD300EMaNGiQ/9zXX39dK1eu1IkTJ5Senq65c+eqc+fOks7scTx//ny98847qq6uVv/+/TV37lxFRkZKko4ePapZs2bpyy+/VEREhEaNGuW/qaQ2avZDTk9Pr+ffCAA0vIqKCl199dWyWq2qqqpSSEiIevToofbt2+vw4cP66quvdPr0aX/9888/P2dZBQA0dReS14IaiC9VBGIAl7Lq6mpdddVVkqSEhARlZ2fLYrGopKREUVFR8ng8uu2223TkyBFJ0j/+8Q8e3QzgknMheS3ou0wAABqXx+Px/3zPPfdo1KhROnz4sP9Y+/btdc899+ixxx6TdGbfYmaIATRnBGIAMJiQkBD/zzWh12w2y+v1ymw26/Dhw/7jUu03tgeASxWBGAAMpqysLOC12WxWz5491bFjR33//ffavXt3wA5AJSUlio2Nbew2AaDREIgBwGDOflpnmzZtdOWVV2rbtm3atWuXwsLCdP3112vXrl06fvy4JJ3zZFAAaG4IxABgYCdOnNBXX32lu+66S5GRkSotLdXbb7+tEydOBLs1AGg0BGIAMJizn9YZERGhkydPauXKlf5jLVq0UEREhEpKSvzjeZIngOaMQAwABmOz2STJv9WadCYYx8bGyul0qqysTBUVFbJYLPJ4PAoLCwtmuwDQ4AjEAGAwNY+p93g8Cg8Pl9vtVllZmf9mu5CQENlsNpWXl0sSW64BaPYIxABgMGazWTabTW63W+Xl5f5dJuLi4nTs2DHt2bPHH4ZtNlutn+IJAJcqAjEAGEx1dbXcbrf/tdfr1Z49e/z7EJ+95Zrb7fYfB4Dmik84ADCYmnXDZ6sJwWeH4RonT55s8J4AIJgIxABgMOHh4f6fe/TooYSEhIB6QkKCevTo4X8dGRnZaL0BQDCwZAIADKZmfbAk7dmzR7/73e90//33y263q7i4WG+//bb27NnjH1NaWsqT6gA0awRiADCYiIgI/882m03dunXTyy+/LLfbLZvNpn79+snpdKqyslJS4JPtAKA5IhADgMGcPn3a/3NlZaXef/99/04SVVVVev/99wPGV1VVsfUagGaNNcQAYDAWiyXgtdlsls/nkyT5fL5zdpSoeZAHADRXBGIAMBiPxxPw2uv1+meITSbTOTtNnL1FGwA0RwRiADAYZogBIBCBGAAM5uczvjVh+Jde19xcBwDNFYEYAAzO5/MFLJn4eSAGgOaOQAwABvPzJRBhYWEBgTgsLOycOgA0ZwRiADCYn99U5/F4Ah7d/PM6N9UBaO4IxABgMDWzwTXO3pf4fK9/fhMeADQ3BGIAMJgTJ05c0Pjjx483UCcA0DQQiAHAYFq1ahXwOiwsTCEhIZKkkJCQc9YMt2nTptF6A4Bg4NHNAGAwZy+JMJlMio6O1tChQ9W2bVsVFRVpw4YNcrvd/t0mqqqqFBrK/y4ANF98wgGAwVRXV/t/tlqt6tGjh15++WVVVlYqLCxM/fv310cffaSqqipJ5+5LDADNDYEYAAzm7F0j3G63tmzZonbt2ikuLk7Hjh3Tli1bAsZXVlaqZcuWjd0mADQa1hADgMG0aNHC/3PHjh0VEhKiwsJC7d27V4WFhQoJCVGHDh3OOx4AmiNmiAHAYM6e7f3+++8l/d8T6kwmk06fPq1Dhw75xxCIATR3zBADgMGYzWYlJycHHDv7SXVnS0lJOecYADQ3BGIAMKDw8PCA12c/qe7XxgFAc0QgBgCD8Xq92rNnz28+gS40NFR79uxhlwkAzR6BGAAMpqKiQl6vVx6P51fHVVdX6/Tp06qoqGikzgAgOAjEAGBwZrP5V18DQHPHLhMAYDA2m+2cY1deeaUSExN18OBB7d69O6D280c5A0BzQyAGAIM5ewlEixYt9N577ykyMtJ/rLS0VNdff71/XEVFBQ/mANCsEYgBwGDODsQVFRW67bbbNHToUMXHx6ugoEAbNmwIGON2uwnEAJo1AjEAGMzZu0uYzWadPHlSL774oqqrqxUaGiqLxSKz2ezfgu23dqMAgEsdd04AgMGcPn3a/3OvXr00YMAAhYSESJJCQkI0YMAAZWRk+Mf81m4UAHCpY4YYAAwmJibG//OOHTvUtm1bjRkzRm3btlVRUZHWr1+voqKi844HgOaIQAwABhMaGqq4uDgdO3ZMknT8+HGtXLlSXq9XZrM54EEcv/vd79iGDUCzRyAG8IuOHDmi0tLSYLeBBjBy5EgtWbJEkmQymQIe3Xx2KB4xYoRyc3OD1icaTmRkpBISEoLdBtAkmHw8k/OCORwOSVJ6enqQOwEajtPp1MCBA/1BCUDzEhISog8++ECxsbHBbgVoEBeS15ghBnBesbGx2rhxIzPEzdwXX3yhtWvX6ujRo/5jv/vd7zRixAj16tUriJ2hoUVGRhKGgf+PQAzgF/HPqc1fcnKyxowZI4fDobvvvluvvvqqUlNTg90WADQq7pQAACg09Mz8CDfQATCioH7yFRQUaNKkScrIyFDv3r31yCOPqKSkREeOHFGXLl2Unp4e8PXXv/7Vf+67776rW265RZdffrmGDRum7du3+2ter1eLFy/WgAEDdOWVV+qee+7R4cOH/XWXy6WpU6eqd+/e6tOnj2bMmKHKyspGvXYAAAA0DUENxOPHj1dUVJS2bdum9evX61//+pcWLFjgrzscjoCve+65R5KUm5ur6dOna9q0afriiy80evRoPfDAA/41cGvWrNGmTZu0cuVKffzxx+rYsaMmTZrkv2t61qxZqqio0ObNm/Xmm28qPz9fCxcubPxfAAAAAIIuaGuIS0pKlJaWpoceekgtW7ZUy5YtNXToUL366qu/ee7atWvVt29f9e3bV5I0ZMgQvfbaa3r77bc1btw4ZWdna/To0erUqZMkKSsrSxkZGfr666+VkJCgrVu3asOGDbLb7ZKkiRMnasqUKZo+fXqtH1Hq8/lUXl5ex6sHgKal5l/JKisr+WwD0Cz4fD6ZTKZajQ1aII6KitL8+fMDjhUWFqpt27b+1w8//LB27Nih6upqjRgxQpMnT5bFYlFOTo4/DNdISUmRw+FQZWWl8vLylJKS4q9FRESoQ4cOcjgcKi0tVUhIiLp06eKvp6amqry8XAcOHAg4/ms8Hg97cwJoNg4dOiRJOnjwIFvtAWg2rFZrrcY1mV0mHA6HXnvtNS1btkxWq1WXX365Bg4cqCeffFK5ubl68MEHFRoaqilTpsjlcik6Ojrg/OjoaOXl5enkyZPy+XznrTudTsXExCgiIiLgbww1Y51OZ637tVgsSkpKuogrBoCmo+ZmusTExFpPDABAU5aXl1frsU0iEO/evVsTJkzQQw89pN69e0uS/ud//sdf79atm+6//36tWLFCU6ZMkST91vNEfq1eH88iMZlMCg8Pv+j3AYCmICwszP+dzzYAzUFtl0tITWDbtW3btmncuHF69NFHddddd/3iuPj4eP3000/y+XyKjY2Vy+UKqLtcLtntdsXExMhsNp+33qpVK9ntdpWVlen06dMBNUlq1apVfV0WAAAALhFBDcRfffWVpk+frueee0633nqr//jOnTu1bNmygLEHDhxQfHy8TCaT0tLStG/fvoC6w+FQ9+7dZbPZdNlllyknJ8dfKykp0Q8//KBu3bopOTlZPp9P+/fvDzg3KipKiYmJDXOhAAAAaLKCFoirq6s1c+ZMTZs2TX369AmoRUZG6oUXXtBbb70lj8cjh8Ohv/71r8rMzJQkjRw5Ujt27NAnn3wit9utdevW6fvvv9eQIUMkSZmZmVq9erXy8/NVVlamhQsXKjk5Wenp6bLb7Ro8eLCeffZZFRcX6+jRo3rhhRc0fPhw/8b0AAAAMI6gJcC9e/cqPz9f8+bN07x58wJq7733nhYvXqylS5dq9uzZioyM1J133qm7775bktS5c2ctXLhQ8+fPV0FBgZKSkrRixQq1adNGkjRq1CgdP35cd955p06dOqWMjAwtXbrU//6PP/645syZowEDBshisejmm29WVlZW4108AAAAmgyTrz7uMDMYh8MhSUpPTw9yJwBQP3Jzc3X77bdrzZo1Sk5ODnY7AHDRLiSvBf2mOgAAACCYCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADC2ogbigoECTJk1SRkaGevfurUceeUQlJSWSpNzcXN1xxx3q2bOnBg0apJdeeing3HfffVe33HKLLr/8cg0bNkzbt2/317xerxYvXqwBAwboyiuv1D333KPDhw/76y6XS1OnTlXv3r3Vp08fzZgxQ5WVlY1z0QAAAGhSghqIx48fr6ioKG3btk3r16/Xv/71Ly1YsECVlZW6//771atXL3322WdavHixVqxYoQ8++EDSmbA8ffp0TZs2TV988YVGjx6tBx54QEePHpUkrVmzRps2bdLKlSv18ccfq2PHjpo0aZJ8Pp8kadasWaqoqNDmzZv15ptvKj8/XwsXLgza7wEAAADBExqsP7ikpERpaWl66KGH1LJlS7Vs2VJDhw7Vq6++qk8++UQej0cTJkxQSEiIUlNTNWLECGVnZ2vQoEFau3at+vbtq759+0qShgwZotdee01vv/22xo0bp+zsbI0ePVqdOnWSJGVlZSkjI0Nff/21EhIStHXrVm3YsEF2u12SNHHiRE2ZMkXTp0+XxWKpVf8+n0/l5eUN88sBgEZW869klZWVfLYBaBZ8Pp9MJlOtxgYtEEdFRWn+/PkBxwoLC9W2bVvl5OSoS5cuCgkJ8ddSUlK0du1aSVJOTo4/DJ9ddzgcqqysVF5enlJSUvy1iIgIdejQQQ6HQ6WlpQoJCVGXLl389dTUVJWXl+vAgQMBx3+Nx+NRbm7uBV83ADRFhw4dkiQdPHhQXq83yN0AQP2wWq21Ghe0QPxzDodDr732mpYtW6YtW7YoKioqoB4TEyOXyyWv1yuXy6Xo6OiAenR0tPLy8nTy5En5fL7z1p1Op2JiYhQRERHwN4aasU6ns9b9WiwWJSUlXehlAkCTZDafWUGXmJhY64kBAGjK8vLyaj22SQTi3bt3a8KECXrooYfUu3dvbdmy5bzjzg6xNeuBf8mv1X/r3NowmUwKDw+/6PcBgKYgLCzM/53PNgDNQW2XS0h1vKmuurpa//u//+t//emnn2rixIlatGiRqqqqLui9tm3bpnHjxunRRx/VXXfdJUmy2+3nzNa6XC7FxMTIbDYrNjZWLpfrnLrdbvePOV+9VatWstvtKisr0+nTpwNqktSqVasL6h0AAACXvjoF4oULF2rVqlWSpB9//FEPPvigIiIi9Pe//11PPfVUrd/nq6++0vTp0/Xcc8/p1ltv9R9PS0vTt99+q+rqav8xh8Oh7t27++v79u0LeK+aus1m02WXXaacnBx/raSkRD/88IO6deum5ORk+Xw+7d+/P+DcqKgoJSYmXtDvAQAAAJe+OgXiLVu2aPny5ZKkTZs2qXv37nrqqae0ZMkSbdu2rVbvUV1drZkzZ2ratGnq06dPQK1v376KiIjQsmXLVFFRoa+//lrr1q1TZmamJGnkyJHasWOHPvnkE7ndbq1bt07ff/+9hgwZIknKzMzU6tWrlZ+fr7KyMi1cuFDJyclKT0+X3W7X4MGD9eyzz6q4uFhHjx7VCy+8oOHDhys0tEmsIAEAAEAjqlMCLCkpUYcOHSRJO3bs0IABAyRJcXFxKi4urtV77N27V/n5+Zo3b57mzZsXUHvvvfe0fPlyzZkzRytXrlTr1q2VlZWlfv36SZI6d+6shQsXav78+SooKFBSUpJWrFihNm3aSJJGjRql48eP684779SpU6eUkZGhpUuX+t//8ccf15w5czRgwABZLBbdfPPNysrKqsuvAgAAAJe4OgXi2NhYHTlyRDabTXv27NHs2bMlndk2rbY3Y1xxxRX69ttvf3XMG2+88Yu1QYMGadCgQeetmUwmTZ48WZMnTz5vPTIyUs8880yt+gQAAEDzVqdAfOutt2rUqFEKCQlRjx491KlTJ506dUrTp0/3z+ICAAAAl4I6BeLJkycrKSlJJSUluvnmmyWd2Ze3Q4cOmj59er02CAAAADSkOt9FduONN0qSfycIq9WqJ554on66AgAAABpJnXaZ8Hq9ev7553XttdeqR48ekqSKigrNmTPngvchBgAAAIKpToF4yZIlevPNN3XHHXf4j5WXl2vv3r167rnn6q05AAAAoKHVKRC/9dZbWrZsmcaOHet/LF6rVq20ePFivfXWW/XaIAAAANCQ6hSIi4uLlZKScs7xDh066OTJkxfdFAAAANBY6hSIf//73ys3N1eS5PP5/Md37NjhfzgGAAAAcCmo0y4TQ4YM0aRJk3TPPffI5/Ppgw8+0L59+/TGG29ozJgx9d0jAAAA0GDqFIjvv/9+VVVV6fnnn5fH49HkyZPVunVrjR8/nkAMAACAS0qdAnHNo5EffPBBFRcXy2azKSIior57AwAAABpcnQLxrl27frFmNpvVrl07/f73v69zUwAAAEBjqVMgvvPOO/3brdXcVHf2a5PJpNTUVD3//PMEYwAAADRpddpl4uWXX1ZSUpIeffRRrV+/Xhs3btTMmTOVnJysv/zlL/rrX/+qli1basGCBfXdLwAAAFCv6jRD/Pzzz+vPf/6z0tPT/ce6du2qbt266fnnn9eLL76ozp0769Zbb62vPgEAAIAGUacZ4m+++UZdunQ553jXrl21e/duSVJMTIzKy8svrjsAAACggdUpELdu3VovvviiTp8+7T/m8/m0evVq/24TL730kjp27FgvTQIAAAANpU5LJqZMmaJHHnlEr7zyitq1ayeLxaIff/xRTqdTM2fOlMfj0dKlS/X888/Xd78AAABAvapTIL7lllvUs2dPvfPOOzp27Ji8Xq+uu+46DRw4UJ06dZIkbdu2Ta1bt67XZgEAAID6VqdA/PLLL2v06NG67777fnEMYRgAAACXgjqtIV62bBk3zAEAAKBZqFMgnjZtmp544gnt379fp06dUlVVVcAXAAAAcKmo05KJp556SlVVVdq4ceN567m5uRfTEwAAANBo6hSIH3300fruAwAAAAiKOgXioUOH/mLtueeeq3MzAAAAQGOrUyCWpPz8fDkcDrndbv+xH3/8Ua+88oqmTJlSL80BAAAADa1OgXjTpk2aPn26vF6vTCaTfD6fJCk6Olp33XVXvTYIAAAANKQ67TKxYsUKzZkzR//85z9lsVj0zTffaM2aNerRo4dGjhxZ3z0CAAAADaZOM8QFBQUaOXKkTCaTJMlsNqtnz54ym82aPXu2XnrppXptEgAAAGgodZohtlqtKisrkySFh4erqKhIktStWzft3bu33poDAAAAGlqdAnGfPn00btw4lZeXq1u3bpo/f74cDodWr16tyMjI+u4RAAAAaDB1CsSPPvqooqOjFRoaqqlTp2rHjh0aMWKEFi1apAceeKC+ewQAAAAaTJ3WELdq1UrLly+XJKWkpOijjz5Sfn6+4uPj1bp163ptEAAAAGhIdd6HuLq6WkVFRf59iKOiolRaWqrS0lIlJibWW4MAAABAQ6pTIN66datmzJihkpKSgOM+n08mk0m5ubn10hwAAADQ0OoUiJ988kldc801uuWWWxQWFlbfPQEAAACNpk6BuLi4WE8++aSsVmt99wMAAAA0qjrtMnHZZZfp5MmT9d0LAAAA0OjqFIjnzp2rp59+Wnl5eXK73aqqqgr4AgAAAC4VtV4y0bVrV/+jmqUzN9Bt2rTpvGO5qQ4AAACXiloH4j//+c/nBOKqqirZbDZJUmlpqSIiIgLGAAAAAE1drQPxsGHD/D//+OOPGj9+vCZOnKjrr79ekvTSSy/ppZde0ooVK+q/SwAAAKCB1GkN8fz585WYmKgePXr4jw0ZMkRpaWn685//XG/NAQAAAA2tTtuu7dq1S9u2bVN4eLj/WOvWrTVr1ixde+219dYcAAAA0NDqNEPs8/nk8XjOOX7q1CmdPn36opsCAAAAGkudAvE111yj6dOna//+/SorK1NJSYn27Nmjhx56SP369avnFgEAAICGU6clE3/60580adIk3XrrrQG7SlxxxRWaM2dOvTUHAAAANLQ6BWK73a433nhD+/fv16FDhxQSEqKOHTsqKSnpgt/rs88+0/Tp05WRkaHFixf7j69fv16PPvqoLBZLwPg1a9aoW7du8nq9eu6557R582aVlJSoW7dumjt3rtq3by9Jcrlcmjt3rr788kuZzWb17dtXs2bNUlhYmKQzeyU/+eSTys3NVatWrTRq1CiNHTu2Lr8OAAAAXMLqFIhrdO3aVV27dq3z+S+++KLWrVunDh06nLd+5ZVX6tVXXz1vbc2aNdq0aZNefPFFxcXFafHixZo0aZLeeustmUwmzZo1S1VVVdq8ebM8Ho+mTJmihQsXaubMmaqsrNT999+vkSNHauXKlTp48KDGjh2rhIQEDRo0qM7XAwAAgEvPRQXii2Wz2bRu3To9+eSTcrvdF3Rudna2Ro8erU6dOkmSsrKylJGRoa+//loJCQnaunWrNmzYILvdLkmaOHGipkyZounTp+uTTz6Rx+PRhAkTFBISotTUVI0YMULZ2dm1DsQ+n0/l5eUXdsEA0ERVVlb6v/PZBqA58Pl8tX5gXFAD8V133fWr9cLCQo0ZM0b79u1TVFSUJk+erD/84Q+qrKxUXl6eUlJS/GMjIiLUoUMHORwOlZaWKiQkRF26dPHXU1NTVV5ergMHDignJ0ddunRRSEiIv56SkqK1a9fWunePx8MjqgE0G4cOHZIkHTx4UF6vN8jdAED9sFqttRoX1ED8a+x2uzp27Kj/+q//UlJSkj788EM9/PDDatu2rf7t3/5NPp9P0dHRAedER0fL6XQqJibmnMdI14x1Op1yuVyKiooKODcmJkYul0ter1dm829vvmGxWOq0ZhoAmqKaz73ExMSAyQQAuFTl5eXVemyTDcT9+vUL2MLtpptu0ocffqj169dr2rRpks5Mhf+SX6v9ktpOq9eMPfvBJABwKau54TgsLIzPNgDNwoXkujrtQxws8fHxKioqUkxMjMxms1wuV0Dd5XKpVatWstvtKisrC3hISM3YmrrT6Tzn3Jr3BQAAgHE02fT3xhtv6N133w04lp+fr/bt28tms+myyy5TTk6Ov1ZSUqIffvhB3bp1U3Jysnw+n/bv3++vOxwORUVFKTExUWlpafr2229VXV0dUO/evXvDXxgAAACalCYbiKuqqvTEE0/I4XDI4/Fo8+bN+tvf/qZRo0ZJkjIzM7V69Wrl5+errKxMCxcuVHJystLT02W32zV48GA9++yzKi4u1tGjR/XCCy9o+PDhCg0NVd++fRUREaFly5apoqJCX3/9tdatW6fMzMwgXzUAAAAaW1DXEKenp0uSf6Z269atks7M1t511106deqUpkyZouPHjyshIUEvvPCC0tLSJEmjRo3S8ePHdeedd+rUqVPKyMjQ0qVL/e/9+OOPa86cORowYIAsFotuvvlmZWVlSTpzx+Hy5cs1Z84crVy5Uq1bt1ZWVhaPnQYAADAgk68ud58ZnMPhkPR/gR4ALnW5ubm6/fbbtWbNGiUnJwe7HQC4aBeS15rskgkAAACgMRCIAQAAYGgEYgAAABgagRgAAACGRiAGAACAoRGIAQAAYGgEYgAAABgagRgAAACGRiAGAACAoRGIAQAAYGgEYgAAABgagRgAAACGRiAGAACAoRGIAQAAYGgEYgAAABhaaLAbwKWlsLBQLpcr2G0AqGcHDx4M+A6geYmJiVG7du2C3UaTRSBGrRUWFmrosGGqcruD3QqABjJz5sxgtwCgAVhtNm1Yv55Q/AsIxKg1l8ulKrdbxUlXq7pFdLDbAQAAtRBacVL2vM/lcrkIxL+AQIwLVt0iWp6IVsFuAwAAoF5wUx0AAAAMjUAMAAAAQyMQAwAAwNAIxAAAADA0AjEAAAAMjUAMAAAAQyMQAwAAwNAIxAAAADA0AjEAAAAMjUAMAAAAQyMQAwAAwNAIxAAAADA0AjEAAAAMjUAMAAAAQyMQAwAAwNAIxAAAADA0AjEAAAAMjUAMAAAAQyMQAwAAwNAIxAAAADA0AjEAAAAMjUAMAAAAQyMQAwAAwNAIxAAAADA0AjEAAAAMjUAMAAAAQyMQAwAAwNAIxAAAADC0oAfizz77TL1791ZWVtY5tXfffVe33HKLLr/8cg0bNkzbt2/317xerxYvXqwBAwboyiuv1D333KPDhw/76y6XS1OnTlXv3r3Vp08fzZgxQ5WVlf56bm6u7rjjDvXs2VODBg3SSy+91LAXCgAAgCYpqIH4xRdf1Lx589ShQ4dzarm5uZo+fbqmTZumL774QqNHj9YDDzygo0ePSpLWrFmjTZs2aeXKlfr444/VsWNHTZo0ST6fT5I0a9YsVVRUaPPmzXrzzTeVn5+vhQsXSpIqKyt1//33q1evXvrss8+0ePFirVixQh988EHjXTwAAACahNBg/uE2m03r1q3Tk08+KbfbHVBbu3at+vbtq759+0qShgwZotdee01vv/22xo0bp+zsbI0ePVqdOnWSJGVlZSkjI0Nff/21EhIStHXrVm3YsEF2u12SNHHiRE2ZMkXTp0/XJ598Io/HowkTJigkJESpqakaMWKEsrOzNWjQoFr17vP5VF5eXo+/jabv7Bl2AABwaamsrDRUdvH5fDKZTLUaG9RAfNddd/1iLScnxx+Ga6SkpMjhcKiyslJ5eXlKSUnx1yIiItShQwc5HA6VlpYqJCREXbp08ddTU1NVXl6uAwcOKCcnR126dFFISEjAe69du7bWvXs8HuXm5tZ6fHNw6NChYLcAAADq6ODBg/J6vcFuo1FZrdZajQtqIP41LpdL0dHRAceio6OVl5enkydPyufznbfudDoVExOjiIiIgL8V1Ix1Op1yuVyKiooKODcmJkYul0ter1dm82+vJLFYLEpKSqrr5V2SavN7AQAATVNiYmLAZGFzl5eXV+uxTTYQS/KvB65L/bfOPZ/aTqvXjA0PD7/gP+NSFhYWFuwWAABAHYWFhRkqu1xIrmuyU36xsbFyuVwBx1wul+x2u2JiYmQ2m89bb9Wqlex2u8rKynT69OmAmiR/3el0nnNuzfsCAADAOJps+ktLS9O+ffsCjjkcDnXv3l02m02XXXaZcnJy/LWSkhL98MMP6tatm5KTk+Xz+bR///6Ac6OiopSYmKi0tDR9++23qq6uPue9AQAAYCxNNhCPHDlSO3bs0CeffCK3261169bp+++/15AhQyRJmZmZWr16tfLz81VWVqaFCxcqOTlZ6enpstvtGjx4sJ599lkVFxfr6NGjeuGFFzR8+HCFhoaqb9++ioiI0LJly1RRUaGvv/5a69atU2ZmZpCvGgAAAI0tqGuI09PTJck/U7t161ZJZ2ZrO3furIULF2r+/PkqKChQUlKSVqxYoTZt2kiSRo0apePHj+vOO+/UqVOnlJGRoaVLl/rf+/HHH9ecOXM0YMAAWSwW3Xzzzf6Hf1itVi1fvlxz5szRypUr1bp1a2VlZalfv36NePUAAABoCky+utx9ZnAOh0PS/wV6o8jNzdXtt9+uovQb5YloFex2AABALVjKTqit412tWbNGycnJwW6n0VxIXmuySyYAAACAxkAgBgAAgKERiAEAAGBoBGIAAAAYGoEYAAAAhkYgBgAAgKERiAEAAGBoBGIAAAAYGoEYAAAAhkYgBgAAgKERiAEAAGBoocFuAJee0IqTwW4BAADUEv/f/m0EYlwwe97nwW4BAACg3hCIccGKk65WdYvoYLcBAABqIbTiJJNZv4FAjAtW3SJanohWwW4DAACgXnBTHQAAAAyNQAwAAABDIxADAADA0AjEAAAAMDQCMQAAAAyNQAwAAABDIxADAADA0AjEAAAAMDQCMQAAAAyNQAwAAABDIxADAADA0AjEAAAAMDQCMQAAAAyNQAwAAABDIxADAADA0AjEAAAAMDQCMQAAAAyNQAwAAABDIxADAADA0AjEAAAAMDQCMQAAAAyNQAwAAABDIxADAADA0AjEAAAAMDQCMQAAAAyNQAwAAABDIxADAADA0AjEAAAAMDQCMQAAAAyNQAwAAABDIxADAADA0AjEAAAAMLQmHYi7dOmitLQ0paen+7+eeOIJSdLOnTs1fPhw9ejRQzfddJPefvvtgHNXr16twYMHq0ePHsrMzNS+ffv8NbfbrdmzZ+uaa65RRkaGJk+eLKfT2ajXBgAAgKYhNNgN/Jb33ntPCQkJAceKioo0ceJEzZgxQ7fccot2796tCRMmKDExUenp6dq2bZuWLFmiv/zlL+rSpYtWr16t8ePH64MPPlB4eLgWL16snJwcZWdnq0WLFpo1a5b+9Kc/afny5UG6SgAAAARLkw/E57Np0yZ17NhRw4cPlyT17t1b1157rdauXav09HRlZ2dr2LBh6t69uyTp3nvv1erVq/Xxxx9r8ODBWrdunRYsWKB27dpJkqZOnaqbbrpJx44dU1xcXK168Pl8Ki8vb5gLbKIqKyuD3QIAAKijyspKQ2UXn88nk8lUq7FNPhAvWrRIe/bsUVlZmW644QY98sgjysnJUUpKSsC4lJQUbdmyRZKUk5OjG2+80V8zm81KTk6Ww+FQcnKySktLlZqa6q936tRJYWFhysnJqXUg9ng8ys3NrYcrvHQcOnQo2C0AAIA6OnjwoLxeb7DbaFRWq7VW45p0IP73f/939e7dWwsWLNDhw4c1depUPfbYY3K5XOcE15iYGP86YJfLpejo6IB6dHS0nE6nXC6XJCkqKiqgHhUVdUHriC0Wi5KSkupwVZcus7lJLzkHAAC/IjExUV26dAl2G40mLy+v1mObdCDOzs72/9ypUydNmzZNEyZMUM+ePX/zXJ/Pd1H132IymRQeHn5R73GpCQsLC3YLAACgjsLCwgyVXWq7XEJq4rtM/FxCQoJOnz4ts9nsn+mt4XQ6ZbfbJUmxsbHn1F0ul+x2u3/Mz+snT55Uq1atGqp1AAAANFFNNhB/8803+u///u+AY/n5+bJarerbt2/ANmqStG/fPv9NdGlpacrJyfHXTp8+rW+++Ubdu3dX+/btFR0dHVD/7rvvVFVVpbS0tAa8IgAAADRFTTYQt2rVStnZ2Vq5cqWqqqp08OBBPffcc7rtttv0hz/8QQUFBVq7dq3cbrc+/fRTffrppxo5cqQkKTMzUxs3btTevXtVUVGhZcuWyWq1ql+/fgoJCdHIkSO1fPlyFRYWyul06plnntHAgQPVunXrIF81AAAAGluTXUMcFxenlStXatGiRf5AO3ToUGVlZclms2nFihWaN2+eHnvsMcXHx+vpp59W165dJUnXXHON/uu//ktTp07ViRMnlJ6erpUrV/rXwE6ePFmnTp3SH/7wB1VXV6t///6aO3duEK/20hJacTLYLQAAgFri/9u/zeS72LvLDMjhcEiS0tPTg9xJ4yosLNTQYcNU5XYHuxUAAHABrDabNqxf738GgxFcSF5rsjPEaHratWunDevXn3NDIoBL38GDBzVz5kzNmzdPiYmJwW4HQD2LiYkxVBi+UARiXJB27drxHxTQjCUmJio5OTnYbQBAo2qyN9UBAAAAjYFADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMLDXYDAJquI0eOqLS0NNhtoBEcPHgw4Duav8jISCUkJAS7DaBJIBADOC+n06lbb71VXq832K2gEc2cOTPYLaCRhISE6IMPPlBsbGywWwGCjkAM4LxiY2O1ceNGZoiBZioyMpIwDPx/BGIAv4h/TgUAGAE31QEAAMDQCMQAAAAwNAIxAAAADI1ADAAAAEMjEAMAAMDQCMQAAAAwNAIxAAAADM2wgbigoEDjxo1TRkaG+vfvr6effponcgEAABiQYR/M8eCDDyo1NVVbt27ViRMndP/996t169YaM2ZMsFsDAABAIzLkDLHD4dD+/fs1bdo0RUZGqmPHjho9erSys7OD3RoAAAAamSFniHNychQfH6/o6Gj/sdTUVB08eFBlZWWKiIj4zffw+XwqLy9vyDYBAABQRz6fTyaTqVZjDRmIXS6XoqKiAo7VhGOn01mrQOzxeJSbm9sg/QEAAODiWa3WWo0zZCCWzvyt4WJYLBYlJSXVUzcAAACoT3l5ebUea8hAbLfb5XK5Ao65XC6ZTCbZ7fZavYfJZFJ4eHgDdAcAAICLVdvlEpJBb6pLS0tTYWGhiouL/cccDoeSkpLUsmXLIHYGAACAxmbIQJySkqL09HQtWrRIZWVlys/P16pVq5SZmRns1gAAANDITL6LXUx7iTp69KhmzZqlL7/8UhERERo1apQeeOCBWk2vf/XVV/L5fLVeqA0AAIDGVVVVJZPJpB49evzmWMMG4ouxZ88e+Xw+WSyWYLcCAACA8/B4PDKZTLr88st/cyyBGAAAAIZmyDXEAAAAQA0CMQAAAAyNQAwAAABDIxADAADA0AjEAAAAMDQCMQAAAAyNQAwAAABDIxADAADA0AjEAAAAMDQCMQAAAAzt/wEQNTGSwfMPUAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.boxplot(y='charges', data=data)"
]
},
{
"cell_type": "code",
"execution_count": 181,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 478
},
"id": "dwvatnkpcQ4n",
"outputId": "a9766689-25cd-4b5e-cc79-993e22a7c5ae"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 181,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArAAAAG7CAYAAAA7a6boAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdO0lEQVR4nO3dfZCV5X3H4e9RXgQW0I2WGKZKdTUVWHxrQlpoBTGGxjGSTpMAE1LSOtCJ0EpKGm1LxqnYVAmTKTQvtR0RQ2oYzYRW25iUxiZhatpSm+aEQswya7CUWEdY7AqEVU7/yLiTFZQ9uMvDHa9rhhn33vuc54d/MJ955n7OqTUajUYAAKAQp1U9AAAANEPAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEUZUvUAJ8t//Md/pNFoZOjQoVWPAgDAMfT09KRWq+Xyyy9/1X2vm4BtNBrxpWMAAKeu/rba6yZgX7rz2t7eXvEkAAAcS71e79c+Z2ABACiKgAUAoCgCFgCAoghYAACKImABACiKgAUAoCgCFgCAoghYAACKImABACiKgAUAoCgCFgCAoghYgELNmTMnV1xxRebMmVP1KAAn1ZCqBwCgOVdccUWfn3ft2tW79vjjj1cxEsBJVfkd2G9+85v5pV/6pSxbtuxV9x05ciSf/OQnM2vWrLzlLW/Jb/3Wb+Wpp546SVMCnBpeHq/N/h7gp0GlAfuXf/mXWblyZc4///zj7v385z+fhx56KHfffXceffTRTJgwITfddFMajcZJmBSgei+P08cff7z3z6vtA/hpU2nADh8+PA8++GC/Anbjxo1ZuHBhLrzwwrS0tGTZsmXZuXNn/vM///MkTApwanl5tDo6ALyeVHoG9gMf+EC/9h06dCgdHR2ZOHFi71pLS0vOP//81Ov1XHbZZf16n0ajkQMHDpzIqACVes973tP731u2bDnmv2VbtmzJ9OnTkyS/8zu/kz/90z89afMBDIRGo5FarXbcfUU8xLV///40Go2MHTu2z/rYsWOzb9++fr9PT09Ptm/fPtDjAQy6PXv29P53f/4d27Jli3/vgCINGzbsuHuKCNiXvNbzrkOHDk1bW9sATQNw8px77rm9EXvJJZccd//06dP7tQ/gVNLR0dGvfUUE7JlnnpnTTjstXV1dfda7urryhje8od/vU6vVMnLkyAGeDmDw/d3f/V3vw1nTp08/5pnXn3x4a82aNSdtNoCB0p/jA8kp8DFa/TF8+PBcdNFF2bZtW+/ac889l127dmXKlCkVTgZQjZd/0oBPHgBeT07ZgH366acze/bs3s96nTdvXu67777s3Lkz3d3d+cQnPpFLLrkk7e3tFU8KcHIc6+OyXvrzavsAftpUeoTgpfh84YUXkiSbN29OktTr9fT09KSzszOHDx9OksydOzfPPPNMFixYkOeffz5Tp07Nn//5n1czOEBFHn/88Ve92ypegdeDWuN18k0A9Xo9SdyxBX5qzJkzJ7t27cq1117rI7OAnwr97bUiHuIC4GibNm2qegSASpyyZ2ABAOBYBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRKg3Y3bt3Z9GiRZk6dWpmzpyZVatW5ciRI0ftO3LkSNasWZOrr746l19+ea6//vr8/d//fQUTAwBQtSFVXnzp0qWZNGlSNm/enGeffTaLFy/O2WefnQ9+8IN99t1///154IEHsn79+px//vn5xje+kSVLluSCCy7Iz//8z1c0PQAAVajsDmy9Xs+OHTuyfPnyjB49OhMmTMjChQuzcePGo/Zu27YtV155ZS644IKcfvrpmTlzZs4888x873vfq2ByAACqVNkd2G3btmX8+PEZO3Zs79qkSZPS2dmZ7u7utLS09K7PmDEjt912W7Zv354LL7ww3/zmN3Pw4MG89a1vbeqajUYjBw4cGLC/AwAAA6fRaKRWqx13X2UB29XVlTFjxvRZeylm9+3b1ydgr7322mzfvj1z5sxJkowYMSJ33nlnzj333Kau2dPTk+3bt7+2wQEAGDTDhg077p5Kz8A2Go1+7du0aVM2bdqUBx54IG9+85vz2GOP5fd+7/dy7rnnZsqUKf2+3tChQ9PW1nai4wIAMIg6Ojr6ta+ygG1tbU1XV1efta6urtRqtbS2tvZZ37BhQ973vvf1xuqMGTPytre9LX/7t3/bVMDWarWMHDnyNc8OAMDA68/xgaTCh7gmT56cPXv2ZO/evb1r9Xo9bW1tGTVqVJ+9R44cyYsvvthn7fDhwydlTgAATi2VBezEiRPT3t6e1atXp7u7Ozt37sy6desyb968JMns2bOzdevWJMnVV1+dBx98MDt27MgLL7yQLVu25LHHHsusWbOqGh8AgIpUegZ2zZo1WbFiRaZNm5aWlpbMnTs38+fPT5J0dnb2fmLA4sWL88ILL+Smm27K3r17M378+KxcuTK/+Iu/WOX4AABUoNbo75NUhavX60mS9vb2iicBAOBY+ttrlX6VLAAANEvAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQlEoDdvfu3Vm0aFGmTp2amTNnZtWqVTly5Mgx9+7cuTMLFizIpZdemquuuir33nvvyR0WAIBTQqUBu3Tp0owbNy6bN2/OunXrsnnz5qxfv/6ofYcOHcqNN96Yq666Kt/61reydu3aPPjgg9m5c2cFUwMAUKXKArZer2fHjh1Zvnx5Ro8enQkTJmThwoXZuHHjUXu//OUvp6WlJTfeeGNGjBiRKVOm5OGHH86FF15YweQAAFRpSFUX3rZtW8aPH5+xY8f2rk2aNCmdnZ3p7u5OS0tL7/q///u/5+KLL86tt96af/iHf8jZZ5+dD33oQ3nXu97V1DUbjUYOHDgwYH8HAAAGTqPRSK1WO+6+ygK2q6srY8aM6bP2Uszu27evT8D+8Ic/zNatW3P77bfnYx/7WB555JF89KMfTVtbWyZOnNjva/b09GT79u0D8xcAAGDADRs27Lh7KgvY5MeV3d99kyZNyvXXX58kefe7350vfOELeeSRR5oK2KFDh6atre2EZgUAYHB1dHT0a19lAdva2pqurq4+a11dXanVamltbe2zfs455xy1d/z48XnmmWeaumatVsvIkSNPZFwAAAZZf44PJBU+xDV58uTs2bMne/fu7V2r1+tpa2vLqFGj+uy98MIL88QTT/S5Y7t79+6MHz/+pM0LAMCpobKAnThxYtrb27N69ep0d3dn586dWbduXebNm5ckmT17drZu3Zokede73pV9+/bls5/9bA4dOpSHH34427Zta/ohLgAAylfp58CuWbMm//u//5tp06blAx/4QObMmZP58+cnSTo7O3s/MWDcuHH5i7/4izzyyCN5y1vekrVr1+ZTn/pUzjvvvCrHBwCgArVGf5+kKly9Xk+StLe3VzwJAADH0t9eq/QOLAAANEvAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFKXpgL333nsHYQwAAOifpgP2M5/5TA4cODAYswAAwHE1HbDLly/P7bffnh07duT555/P4cOH+/wBAIDBNKTZF9x11105fPhwNm3adMzfb9++/bXOBAAAr6jpgP2DP/iDwZgDAAD6pemAffe73z0YcwAAQL+c0MdoffGLX8yCBQsya9asJMnhw4dz9913D+hgAABwLE0H7Oc+97nccccdufjii/PMM88kSfbt25e//uu/FrEAAAy6pgN2w4YN+fSnP50VK1akVqslScaNG5e1a9fmC1/4woAPCAAAP6npgP3hD3+YqVOnHrU+adKk3juyAAAwWJoO2J/5mZ/Jrl27jlr/7ne/m7Fjxw7IUAAA8EqaDthrrrkmN998c/7pn/4pjUYj27Zty8aNG7N06dJcd911gzEjAAD0qjUajUYzLzh8+HBWrFiRhx56KEeOHEmSDBkyJO9973vz0Y9+NMOHDx+UQV+rer2eJGlvb694EgAAjqW/vdZ0wL5k//79+cEPfpDhw4fnvPPOy4gRI/Liiy/m9NNPP5G3G3QCFgDg1NbfXmv6CMEnPvGJJMnYsWMzZcqUvPnNb86IESOyZ8+ezJ8//wRGBQCA/ms6YB9++OHcfvvtfdYeffTRzJkzJyNHjhywwQAA4FiaDtj7778/jz32WG699dYcPnw4d955Z5YsWZIFCxbknnvuGYwZAQCg15BmX3Duuedmw4YNWbx4ca666qoMGTIk99xzzzE/GxYAAAZa03dgk6S1tTXr16/PxIkTc8UVV4hXAABOmn7dgZ0+ffox11944YXs378/06ZN6/1a2S1btgzcdAAA8DL9Ctj3ve99vYEKAABV6lfALl26dLDnAACAfmn6Ia4k+Zu/+Zt86Utfyq5du1Kr1fJzP/dzmTt3bq655pqBng8AAPpo+iGuz33uc/nDP/zDtLS05Prrr891112XIUOG5Hd/93fz1a9+dTBmBACAXk3fgd2wYUPWrFmTq6++us/6I488ks9+9rO59tprB2w4AAB4uabvwD799NOZMWPGUevXXHNNdu3aNRAzAQDAK2o6YM8555w8+eSTR60/9dRTGTNmzEDMBAAAr6jpIwRXX311lixZkptuuikXXXRRkuR73/tePv3pT7/i58UCAMBAaTpgly1blueeey4f+chH0mg00mg0UqvVMnv27Nxyyy2DMSMAAPSqNRqNxom8sLu7O//93/+dH/3oRznvvPNy1llnDfRsA6perydJ2tvbK54EAIBj6W+vndDnwCbJ4cOHe8+8Hjx4MAcPHkySvOlNbzrRtwQAgONqOmC/8pWv5LbbbktXV1ef9ZeOEmzfvn2gZgMAgKM0HbB33nln3v72t2fWrFkZMWLEYMwEAACvqOmA3b9/f2677bacdlrTn8AFAACvWdMV+su//Mv5zne+MxizAADAcTV9B/ZjH/tYfuM3fiOTJ0/Om970ptRqtT6/X7JkyYANBwAAL9d0wN5xxx35/ve/n2effTZnnHFGn9/VajUBCwDAoGo6YP/xH/8xGzZsyC/8wi8MxjwAAPCqmj4D29ramilTpgzGLAAAcFxNB+yyZcvyyU9+sveLCwAA4GRq+gjBX/3VX2X37t257777cuaZZx71ENeWLVsGbDgAAHi5pgP27W9/+2DMAQAA/dL0EYL3vve9+cEPfpAlS5ZkyZIl6enpybp16/KNb3wjN9xww2DMCAAAvZoO2JUrV+ZHP/pRkuQ73/lO7rnnntx6662ZOHFi7rrrrgEfEAAAflLTRwj+5V/+JV/96leTJF/+8pcza9as/Pqv/3p+9Vd/1fECAAAGXdN3YHt6ejJ27Ngkybe+9a1cddVVSZJRo0blwIEDAzsdAAC8TNN3YH/2Z382W7ZsyRlnnJEnnngi06dPT/Lj4wRveMMbBnxAAAD4SU0H7OLFi7N48eIcOXIkCxYsyDnnnJP9+/fnpptuyvvf//7BmBEAAHo1HbDvfOc7c+WVV+b555/PBRdckCQZM2ZMfv/3fz/XX3/9gA8IAAA/qemATZJx48b1+blWq4lXAABOiqYf4gIAgCoJWAAAiiJgAQAoioAFAKAoAhYAgKIIWAAAiiJgAQAoSqUBu3v37ixatChTp07NzJkzs2rVqhw5cuRVX/P000/n8ssvz9q1a0/SlAAAnEpO6IsMBsrSpUszadKkbN68Oc8++2wWL16cs88+Ox/84Adf8TUrV67M6aeffhKnBADgVFLZHdh6vZ4dO3Zk+fLlGT16dCZMmJCFCxdm48aNr/iar3/96+no6MiMGTNO3qAAAJxSKrsDu23btowfPz5jx47tXZs0aVI6OzvT3d2dlpaWPvsPHTqUP/7jP84dd9yRTZs2ndA1G41GDhw48FrGBgBgkDQajdRqtePuqyxgu7q6MmbMmD5rL8Xsvn37jgrYT33qU7nsssvytre97YQDtqenJ9u3bz+h1wIAMPiGDRt23D2VnoFtNBr92tfR0ZEHHnggDz300Gu63tChQ9PW1vaa3gMAgMHR0dHRr32VBWxra2u6urr6rHV1daVWq6W1tbV3rdFo5LbbbsvSpUtzzjnnvKZr1mq1jBw58jW9BwAAg6M/xweSCgN28uTJ2bNnT/bu3dsbrPV6PW1tbRk1alTvvv/5n//Jv/3bv+X73/9+1qxZkyQ5cOBATjvttHzta1/Ll770pUrmBwCgGpUF7MSJE9Pe3p7Vq1fn1ltvzdNPP51169blN3/zN5Mks2fPzsqVK3P55Zfn61//ep/XfvzjH88b3/jG3HjjjVWMDgBAhSo9A7tmzZqsWLEi06ZNS0tLS+bOnZv58+cnSTo7O3PgwIGcfvrpeeMb39jndSNGjEhLS8trPlIAAEB5ao3+PklVuHq9niRpb2+veBIAAI6lv71W6VfJAgBAswQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFEbAAABRFwAIAUBQBCwBAUQQsAABFqTRgd+/enUWLFmXq1KmZOXNmVq1alSNHjhxz7/333593vOMdufzyy3PDDTdk8+bNJ3laAABOBZUG7NKlSzNu3Lhs3rw569aty+bNm7N+/fqj9n3lK1/J6tWr8yd/8if513/917z//e/PzTffnKeeeqqCqQEAqFJlAVuv17Njx44sX748o0ePzoQJE7Jw4cJs3LjxqL2HDh3Khz/84Vx55ZUZOnRo3vOe92TUqFH59re/ffIHBwCgUkOquvC2bdsyfvz4jB07tndt0qRJ6ezsTHd3d1paWnrXb7jhhj6vfe655/L8889n3LhxTV2z0WjkwIEDr21wAAAGRaPRSK1WO+6+ygK2q6srY8aM6bP2Uszu27evT8D+pEajkT/6oz/KpZdemre+9a1NXbOnpyfbt28/sYEBABh0w4YNO+6eygI2+XGMNqOnpye33HJLOjo6ct999zV9vaFDh6atra3p1wEAMPg6Ojr6ta+ygG1tbU1XV1efta6urtRqtbS2th61/9ChQ/nQhz6UgwcP5vOf/3zOOuuspq9Zq9UycuTIEx0ZAIBB1J/jA0mFD3FNnjw5e/bsyd69e3vX6vV62traMmrUqD57G41Gli1bliFDhuTee+89oXgFAOCnQ2UBO3HixLS3t2f16tXp7u7Ozp07s27dusybNy9JMnv27GzdujVJ8tBDD6WjoyN/9md/luHDh1c1MgAAp4BKz8CuWbMmK1asyLRp09LS0pK5c+dm/vz5SZLOzs7eTwz44he/mN27dx/10NYNN9yQlStXnvS5AQCoTq3R7JNUharX60mS9vb2iicBAOBY+ttrlX4TFwAANEvAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQlEoDdvfu3Vm0aFGmTp2amTNnZtWqVTly5Mgx99533315xzvekSuuuCLz5s3Ld7/73ZM8LQAAp4JKA3bp0qUZN25cNm/enHXr1mXz5s1Zv379Ufu+9rWvZe3atbnrrrvyz//8z5k5c2Z++7d/OwcOHKhgagAAqlRZwNbr9ezYsSPLly/P6NGjM2HChCxcuDAbN248au/GjRvza7/2a7n00ktzxhln5MYbb0ySPProoyd7bAAAKjakqgtv27Yt48ePz9ixY3vXJk2alM7OznR3d6elpaXP3ne+8529P5922mm55JJLUq/Xc9111/X7mo1G43V51/aJJ57Ik08+WfUYnCRPPvlk/u///q/qMYBB8NINH14fJkyYkIsvvrjqMU6qRqORWq123H2VBWxXV1fGjBnTZ+2lmN23b1+fgO3q6uoTui/t3bdvX1PX7Onpyfbt209w4nKtWrUqTzzxRNVjAABNuPjii/ORj3yk6jFOumHDhh13T2UBm/y4sgdj7ysZOnRo2traXvP7lOaWW25xB/Z1xB1Y+OnlDuzry+vxDmxHR0e/9lUWsK2trenq6uqz1tXVlVqtltbW1j7rZ5111jH3XnTRRU1ds1arZeTIkScybtEuu+yyXHbZZVWPAQDwqvpzfCCp8CGuyZMnZ8+ePdm7d2/vWr1eT1tbW0aNGnXU3m3btvX+/OKLL+a//uu/cumll560eQEAODVUFrATJ05Me3t7Vq9ene7u7uzcuTPr1q3LvHnzkiSzZ8/O1q1bkyTz5s3Lpk2b8u1vfzsHDx7MZz7zmQwbNiwzZsyoanwAACpS6RnYNWvWZMWKFZk2bVpaWloyd+7czJ8/P0nS2dnZ+4kBv/Irv5IPf/jDufnmm/Pss8+mvb09d999d84444wqxwcAoAK1xkA8HVWAer2eJGlvb694EgAAjqW/vVbpN3EBAECzBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFEXAAgBQFAELAEBRBCwAAEURsAAAFGVI1QOcLD09PWk0Gr3fsQsAwKnl8OHDqdVqx933ugnY/vzPAACgOrVarV/NVms0Go2TMA8AAAwIZ2ABACiKgAUAoCgCFgCAoghYAACKImABACiKgAUAoCgCFgCAoghYAACK8v+vJKmBd2CVngAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.boxplot(y='smoker', data=data)"
]
},
{
"cell_type": "code",
"execution_count": 182,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 802
},
"id": "zmSRT9MBcQ_U",
"outputId": "5687b9ab-31b4-4285-b5da-72da44c90a81"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
" \n",
" \n",
" Description \n",
" Value \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Session id \n",
" 123 \n",
" \n",
" \n",
" 1 \n",
" Target \n",
" charges \n",
" \n",
" \n",
" 2 \n",
" Target type \n",
" Regression \n",
" \n",
" \n",
" 3 \n",
" Original data shape \n",
" (1191, 7) \n",
" \n",
" \n",
" 4 \n",
" Transformed data shape \n",
" (1191, 10) \n",
" \n",
" \n",
" 5 \n",
" Transformed train set shape \n",
" (952, 10) \n",
" \n",
" \n",
" 6 \n",
" Transformed test set shape \n",
" (239, 10) \n",
" \n",
" \n",
" 7 \n",
" Numeric features \n",
" 4 \n",
" \n",
" \n",
" 8 \n",
" Categorical features \n",
" 2 \n",
" \n",
" \n",
" 9 \n",
" Preprocess \n",
" True \n",
" \n",
" \n",
" 10 \n",
" Imputation type \n",
" simple \n",
" \n",
" \n",
" 11 \n",
" Numeric imputation \n",
" mean \n",
" \n",
" \n",
" 12 \n",
" Categorical imputation \n",
" mode \n",
" \n",
" \n",
" 13 \n",
" Maximum one-hot encoding \n",
" 25 \n",
" \n",
" \n",
" 14 \n",
" Encoding method \n",
" None \n",
" \n",
" \n",
" 15 \n",
" Normalize \n",
" True \n",
" \n",
" \n",
" 16 \n",
" Normalize method \n",
" minmax \n",
" \n",
" \n",
" 17 \n",
" Fold Generator \n",
" KFold \n",
" \n",
" \n",
" 18 \n",
" Fold Number \n",
" 10 \n",
" \n",
" \n",
" 19 \n",
" CPU Jobs \n",
" -1 \n",
" \n",
" \n",
" 20 \n",
" Use GPU \n",
" False \n",
" \n",
" \n",
" 21 \n",
" Log Experiment \n",
" False \n",
" \n",
" \n",
" 22 \n",
" Experiment Name \n",
" reg-default-name \n",
" \n",
" \n",
" 23 \n",
" USI \n",
" 81cc \n",
" \n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# configuration de l'environnement PyCaret pour la régression\n",
"from pycaret.regression import*\n",
"# minmax :methode de normalisation utilisée\n",
"s = setup(data,target='charges',train_size=0.8,session_id=123,normalize=True,normalize_method='minmax')"
]
},
{
"cell_type": "code",
"execution_count": 183,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 444
},
"id": "eCaXcX5KcRHY",
"outputId": "8ebcf213-444d-49b3-92df-703ed52243a1"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"get_config('X_train_transformed')\",\n \"rows\": 952,\n \"fields\": [\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.30983999452933836,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 47,\n \"samples\": [\n 0.08695652173913049,\n 0.5217391304347826,\n 0.23913043478260876\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sex\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5001921535178707,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 1.0,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"bmi\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.19271666395573864,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 472,\n \"samples\": [\n 0.22832087501399612,\n 0.45972717604769053\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"children\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.24284574630734518,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 0.4,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"smoker\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.30541008946561593,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 1.0,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"region_northeast\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.42827604567976413,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.0,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"region_southeast\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4430755105698088,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 1.0,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"region_northwest\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.43444708241977814,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 1.0,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"region_southwest\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.42635680515189506,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 1.0,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age \n",
" sex \n",
" bmi \n",
" children \n",
" smoker \n",
" region_northeast \n",
" region_southeast \n",
" region_northwest \n",
" region_southwest \n",
" \n",
" \n",
" \n",
" \n",
" 825 \n",
" 1.000000 \n",
" 0.0 \n",
" 0.515265 \n",
" 0.4 \n",
" 0.0 \n",
" 1.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 194 \n",
" 0.000000 \n",
" 1.0 \n",
" 0.599870 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 1058 \n",
" 0.130435 \n",
" 0.0 \n",
" 0.764209 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 821 \n",
" 0.173913 \n",
" 1.0 \n",
" 0.055538 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" 0.0 \n",
" \n",
" \n",
" 994 \n",
" 0.195652 \n",
" 0.0 \n",
" 0.132673 \n",
" 0.6 \n",
" 1.0 \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" 0.0 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 112 \n",
" 0.413043 \n",
" 1.0 \n",
" 0.481975 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" \n",
" \n",
" 1286 \n",
" 0.217391 \n",
" 0.0 \n",
" 0.043196 \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 124 \n",
" 0.630435 \n",
" 0.0 \n",
" 0.583144 \n",
" 0.6 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" 0.0 \n",
" \n",
" \n",
" 1171 \n",
" 0.543478 \n",
" 0.0 \n",
" 0.348815 \n",
" 0.4 \n",
" 1.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" \n",
" \n",
" 1260 \n",
" 0.304348 \n",
" 0.0 \n",
" 0.148100 \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
"
\n",
"
952 rows × 9 columns
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" age sex bmi children smoker region_northeast \\\n",
"825 1.000000 0.0 0.515265 0.4 0.0 1.0 \n",
"194 0.000000 1.0 0.599870 0.0 0.0 0.0 \n",
"1058 0.130435 0.0 0.764209 0.0 0.0 0.0 \n",
"821 0.173913 1.0 0.055538 0.0 0.0 0.0 \n",
"994 0.195652 0.0 0.132673 0.6 1.0 0.0 \n",
"... ... ... ... ... ... ... \n",
"112 0.413043 1.0 0.481975 0.0 0.0 0.0 \n",
"1286 0.217391 0.0 0.043196 0.0 0.0 1.0 \n",
"124 0.630435 0.0 0.583144 0.6 0.0 0.0 \n",
"1171 0.543478 0.0 0.348815 0.4 1.0 0.0 \n",
"1260 0.304348 0.0 0.148100 0.0 0.0 1.0 \n",
"\n",
" region_southeast region_northwest region_southwest \n",
"825 0.0 0.0 0.0 \n",
"194 1.0 0.0 0.0 \n",
"1058 1.0 0.0 0.0 \n",
"821 0.0 1.0 0.0 \n",
"994 0.0 1.0 0.0 \n",
"... ... ... ... \n",
"112 0.0 0.0 1.0 \n",
"1286 0.0 0.0 0.0 \n",
"124 0.0 1.0 0.0 \n",
"1171 0.0 0.0 1.0 \n",
"1260 0.0 0.0 0.0 \n",
"\n",
"[952 rows x 9 columns]"
]
},
"execution_count": 183,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_config('X_train_transformed')"
]
},
{
"cell_type": "code",
"execution_count": 184,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 709,
"referenced_widgets": [
"eabb37aa2c9e496d8dea0223004e8433",
"3b412bab52774f4b8042a40b6d82c26b",
"e3c4e503194b487ab89eebf9c7285213",
"d0065db588724c628b0da4ab4b33b280",
"490504390d334af6bb42fbafd0c73473",
"32d4e7b6a3524223b1c50f47f80c9ef2",
"57195257f2da4645be4170751ae02226",
"292776b320e14d47b54649e7e9624fb3",
"6e41f043d3a04854891539aaf55ad008",
"9e6006f7244441ab8f1616010608f363",
"8fb1891685ab41b4b824eb66354d46d4"
]
},
"id": "3b7lt0-kcRP6",
"outputId": "d2477bc0-7a7b-4a4b-eb23-14322bae63e1"
},
"outputs": [
{
"data": {
"text/html": [],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
" \n",
" \n",
" Model \n",
" MAE \n",
" MSE \n",
" RMSE \n",
" R2 \n",
" RMSLE \n",
" MAPE \n",
" TT (Sec) \n",
" \n",
" \n",
" \n",
" \n",
" gbr \n",
" Gradient Boosting Regressor \n",
" 2408.4907 \n",
" 19706959.9398 \n",
" 4396.7196 \n",
" 0.5936 \n",
" 0.4530 \n",
" 0.3209 \n",
" 0.3720 \n",
" \n",
" \n",
" lr \n",
" Linear Regression \n",
" 2474.4497 \n",
" 20337491.7305 \n",
" 4459.7437 \n",
" 0.5872 \n",
" 0.4312 \n",
" 0.3134 \n",
" 0.0940 \n",
" \n",
" \n",
" ridge \n",
" Ridge Regression \n",
" 2481.6426 \n",
" 20356593.7261 \n",
" 4461.8272 \n",
" 0.5871 \n",
" 0.4345 \n",
" 0.3211 \n",
" 0.1560 \n",
" \n",
" \n",
" br \n",
" Bayesian Ridge \n",
" 2477.3704 \n",
" 20354777.6915 \n",
" 4461.4588 \n",
" 0.5870 \n",
" 0.4324 \n",
" 0.3165 \n",
" 0.0890 \n",
" \n",
" \n",
" lasso \n",
" Lasso Regression \n",
" 2474.2266 \n",
" 20354221.2265 \n",
" 4461.2480 \n",
" 0.5869 \n",
" 0.4310 \n",
" 0.3133 \n",
" 0.1050 \n",
" \n",
" \n",
" lar \n",
" Least Angle Regression \n",
" 2473.9016 \n",
" 20353954.6798 \n",
" 4461.2023 \n",
" 0.5869 \n",
" 0.4307 \n",
" 0.3125 \n",
" 0.0950 \n",
" \n",
" \n",
" llar \n",
" Lasso Least Angle Regression \n",
" 2474.2316 \n",
" 20354279.0035 \n",
" 4461.2545 \n",
" 0.5869 \n",
" 0.4310 \n",
" 0.3133 \n",
" 0.1250 \n",
" \n",
" \n",
" huber \n",
" Huber Regressor \n",
" 1833.1541 \n",
" 21724249.6893 \n",
" 4587.7841 \n",
" 0.5635 \n",
" 0.4272 \n",
" 0.1467 \n",
" 0.1100 \n",
" \n",
" \n",
" par \n",
" Passive Aggressive Regressor \n",
" 1835.6646 \n",
" 21916731.9882 \n",
" 4607.9643 \n",
" 0.5597 \n",
" 0.4369 \n",
" 0.1476 \n",
" 0.1070 \n",
" \n",
" \n",
" rf \n",
" Random Forest Regressor \n",
" 2555.1672 \n",
" 21625680.6768 \n",
" 4614.0673 \n",
" 0.5549 \n",
" 0.4828 \n",
" 0.3452 \n",
" 0.4000 \n",
" \n",
" \n",
" lightgbm \n",
" Light Gradient Boosting Machine \n",
" 2815.6165 \n",
" 22744049.5063 \n",
" 4733.8289 \n",
" 0.5309 \n",
" 0.5958 \n",
" 0.3984 \n",
" 0.6930 \n",
" \n",
" \n",
" ada \n",
" AdaBoost Regressor \n",
" 3586.2694 \n",
" 23273907.4953 \n",
" 4782.2269 \n",
" 0.5186 \n",
" 0.6103 \n",
" 0.6702 \n",
" 0.1100 \n",
" \n",
" \n",
" knn \n",
" K Neighbors Regressor \n",
" 2844.9708 \n",
" 24097670.9000 \n",
" 4861.9527 \n",
" 0.5083 \n",
" 0.5090 \n",
" 0.3665 \n",
" 0.1270 \n",
" \n",
" \n",
" et \n",
" Extra Trees Regressor \n",
" 2491.0009 \n",
" 24442821.4301 \n",
" 4899.5757 \n",
" 0.5008 \n",
" 0.4882 \n",
" 0.3173 \n",
" 0.3290 \n",
" \n",
" \n",
" xgboost \n",
" Extreme Gradient Boosting \n",
" 2966.1781 \n",
" 27182171.2000 \n",
" 5184.2656 \n",
" 0.4313 \n",
" 0.5816 \n",
" 0.4255 \n",
" 0.6260 \n",
" \n",
" \n",
" omp \n",
" Orthogonal Matching Pursuit \n",
" 4414.0776 \n",
" 33606445.8659 \n",
" 5762.6754 \n",
" 0.3186 \n",
" 0.7547 \n",
" 0.9265 \n",
" 0.1090 \n",
" \n",
" \n",
" dt \n",
" Decision Tree Regressor \n",
" 2904.0751 \n",
" 39500706.4719 \n",
" 6233.5161 \n",
" 0.1809 \n",
" 0.5602 \n",
" 0.3952 \n",
" 0.1590 \n",
" \n",
" \n",
" en \n",
" Elastic Net \n",
" 4970.9924 \n",
" 42311215.6665 \n",
" 6460.3559 \n",
" 0.1492 \n",
" 0.7874 \n",
" 1.0125 \n",
" 0.1480 \n",
" \n",
" \n",
" dummy \n",
" Dummy Regressor \n",
" 5530.7755 \n",
" 50881793.2000 \n",
" 7087.3234 \n",
" -0.0250 \n",
" 0.8522 \n",
" 1.1488 \n",
" 0.1740 \n",
" \n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eabb37aa2c9e496d8dea0223004e8433",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Processing: 0%| | 0/81 [00:00, ?it/s]"
]
},
"metadata": {
"application/vnd.jupyter.widget-view+json": {
"colab": {
"custom_widget_manager": {
"url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/2b70e893a8ba7c0f/manager.min.js"
}
}
}
},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"GradientBoostingRegressor(random_state=123) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
],
"text/plain": [
"GradientBoostingRegressor(random_state=123)"
]
},
"execution_count": 184,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"compare_models()"
]
},
{
"cell_type": "code",
"execution_count": 185,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 457,
"referenced_widgets": [
"ed13942317be4ebfbf35d46c96810abc",
"c15cb55c09df4dcf878d639fb1fea451",
"772851bb8fcd411c93091e182b352adb",
"cc9b43c550e74f02b14183ebe37b8030",
"b22442b4e846481abbbb3718759eb1d0",
"a1b72fda51c5437b89abcde2218cf343",
"b5643195fdd041f6ad5b1be69457e4dc",
"9701fe45d03240ed87a14fdf5433e6c4",
"c83e8fdccacd4a78a99366298c53006c",
"0d02c123214f4c7ea2219e3f9c562ca0",
"3a4856d6bfd14c2a9ce277b42b2b963c"
]
},
"id": "EylQNEKrcRUX",
"outputId": "0b5f041e-3b67-4254-c72d-6cd6dae44e2d"
},
"outputs": [
{
"data": {
"text/html": [],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
" \n",
" \n",
" MAE \n",
" MSE \n",
" RMSE \n",
" R2 \n",
" RMSLE \n",
" MAPE \n",
" \n",
" \n",
" Fold \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 2054.4400 \n",
" 11914038.7441 \n",
" 3451.6719 \n",
" 0.7123 \n",
" 0.3972 \n",
" 0.3554 \n",
" \n",
" \n",
" 1 \n",
" 1925.5019 \n",
" 10513662.3529 \n",
" 3242.4778 \n",
" 0.6206 \n",
" 0.4335 \n",
" 0.3520 \n",
" \n",
" \n",
" 2 \n",
" 2349.4091 \n",
" 23001504.5398 \n",
" 4795.9884 \n",
" 0.6059 \n",
" 0.4544 \n",
" 0.2584 \n",
" \n",
" \n",
" 3 \n",
" 2397.9176 \n",
" 17738926.1974 \n",
" 4211.7605 \n",
" 0.6833 \n",
" 0.3804 \n",
" 0.2938 \n",
" \n",
" \n",
" 4 \n",
" 2815.7279 \n",
" 26749090.9929 \n",
" 5171.9523 \n",
" 0.5776 \n",
" 0.5459 \n",
" 0.4098 \n",
" \n",
" \n",
" 5 \n",
" 2277.9101 \n",
" 17104396.0848 \n",
" 4135.7461 \n",
" 0.6496 \n",
" 0.4004 \n",
" 0.2917 \n",
" \n",
" \n",
" 6 \n",
" 2690.8479 \n",
" 25410525.3758 \n",
" 5040.8854 \n",
" 0.2572 \n",
" 0.5121 \n",
" 0.2545 \n",
" \n",
" \n",
" 7 \n",
" 2533.3342 \n",
" 19529291.6958 \n",
" 4419.1958 \n",
" 0.6844 \n",
" 0.4582 \n",
" 0.4038 \n",
" \n",
" \n",
" 8 \n",
" 2473.6004 \n",
" 23105546.3596 \n",
" 4806.8229 \n",
" 0.4984 \n",
" 0.4757 \n",
" 0.2893 \n",
" \n",
" \n",
" 9 \n",
" 2566.2182 \n",
" 22002617.0551 \n",
" 4690.6947 \n",
" 0.6461 \n",
" 0.4720 \n",
" 0.3007 \n",
" \n",
" \n",
" Mean \n",
" 2408.4907 \n",
" 19706959.9398 \n",
" 4396.7196 \n",
" 0.5936 \n",
" 0.4530 \n",
" 0.3209 \n",
" \n",
" \n",
" Std \n",
" 258.7576 \n",
" 5154814.5121 \n",
" 613.0390 \n",
" 0.1263 \n",
" 0.0496 \n",
" 0.0532 \n",
" \n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ed13942317be4ebfbf35d46c96810abc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Processing: 0%| | 0/4 [00:00, ?it/s]"
]
},
"metadata": {
"application/vnd.jupyter.widget-view+json": {
"colab": {
"custom_widget_manager": {
"url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/2b70e893a8ba7c0f/manager.min.js"
}
}
}
},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# crossvalidation\n",
"# création du modèle de régression Gradient Boosting Regressor (GBR) en utilisant la fonction create_model() de PyCaret.\n",
"best = create_model('gbr')"
]
},
{
"cell_type": "code",
"execution_count": 186,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 176,
"referenced_widgets": [
"4df927f6411b49608307bb80f8503e88",
"39729d8c1ac1463c96e313d3d135cf45",
"e464f5c4fd924747b29d5857427ab9cd",
"67ca013585aa4a6c886609df361eb288",
"e5ab7e504f6b4feb818b8ab620ebf0eb",
"bf4076cd18534a0f9ee541a319808536",
"6ce97aeb113543a58e4f89eed32ca72d"
]
},
"id": "ROZbG0czcRdG",
"outputId": "358dd9ad-87d6-4ff7-a826-287396fc8daf"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4df927f6411b49608307bb80f8503e88",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Pipeline Plot', 'pipelin…"
]
},
"metadata": {
"application/vnd.jupyter.widget-view+json": {
"colab": {
"custom_widget_manager": {
"url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/2b70e893a8ba7c0f/manager.min.js"
}
}
}
},
"output_type": "display_data"
}
],
"source": [
"evaluate_model(best)\n"
]
},
{
"cell_type": "code",
"execution_count": 189,
"metadata": {
"id": "-Xif_V-kYp7p"
},
"outputs": [],
"source": [
"import pickle\n"
]
},
{
"cell_type": "code",
"execution_count": 191,
"metadata": {
"id": "RLD5jF23ee-W"
},
"outputs": [],
"source": [
"pickle.dump(best, open('assurance.pkl', 'wb'))"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0d02c123214f4c7ea2219e3f9c562ca0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"292776b320e14d47b54649e7e9624fb3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"32d4e7b6a3524223b1c50f47f80c9ef2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"39729d8c1ac1463c96e313d3d135cf45": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ToggleButtonsModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ToggleButtonsModel",
"_options_labels": [
"Pipeline Plot",
"Hyperparameters",
"Residuals",
"Prediction Error",
"Cooks Distance",
"Feature Selection",
"Learning Curve",
"Manifold Learning",
"Validation Curve",
"Feature Importance",
"Feature Importance (All)",
"Decision Tree",
"Interactive Residuals"
],
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ToggleButtonsView",
"button_style": "",
"description": "Plot Type:",
"description_tooltip": null,
"disabled": false,
"icons": [
""
],
"index": 0,
"layout": "IPY_MODEL_e5ab7e504f6b4feb818b8ab620ebf0eb",
"style": "IPY_MODEL_bf4076cd18534a0f9ee541a319808536",
"tooltips": []
}
},
"3a4856d6bfd14c2a9ce277b42b2b963c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"3b412bab52774f4b8042a40b6d82c26b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_32d4e7b6a3524223b1c50f47f80c9ef2",
"placeholder": "",
"style": "IPY_MODEL_57195257f2da4645be4170751ae02226",
"value": "Processing: 100%"
}
},
"490504390d334af6bb42fbafd0c73473": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": "hidden",
"width": null
}
},
"4df927f6411b49608307bb80f8503e88": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "VBoxModel",
"state": {
"_dom_classes": [
"widget-interact"
],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "VBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "VBoxView",
"box_style": "",
"children": [
"IPY_MODEL_39729d8c1ac1463c96e313d3d135cf45",
"IPY_MODEL_e464f5c4fd924747b29d5857427ab9cd"
],
"layout": "IPY_MODEL_67ca013585aa4a6c886609df361eb288"
}
},
"57195257f2da4645be4170751ae02226": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"67ca013585aa4a6c886609df361eb288": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6ce97aeb113543a58e4f89eed32ca72d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6e41f043d3a04854891539aaf55ad008": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"772851bb8fcd411c93091e182b352adb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9701fe45d03240ed87a14fdf5433e6c4",
"max": 4,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_c83e8fdccacd4a78a99366298c53006c",
"value": 4
}
},
"8fb1891685ab41b4b824eb66354d46d4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"9701fe45d03240ed87a14fdf5433e6c4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9e6006f7244441ab8f1616010608f363": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a1b72fda51c5437b89abcde2218cf343": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b22442b4e846481abbbb3718759eb1d0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": "hidden",
"width": null
}
},
"b5643195fdd041f6ad5b1be69457e4dc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"bf4076cd18534a0f9ee541a319808536": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ToggleButtonsStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ToggleButtonsStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"button_width": "",
"description_width": "",
"font_weight": ""
}
},
"c15cb55c09df4dcf878d639fb1fea451": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a1b72fda51c5437b89abcde2218cf343",
"placeholder": "",
"style": "IPY_MODEL_b5643195fdd041f6ad5b1be69457e4dc",
"value": "Processing: 100%"
}
},
"c83e8fdccacd4a78a99366298c53006c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"cc9b43c550e74f02b14183ebe37b8030": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0d02c123214f4c7ea2219e3f9c562ca0",
"placeholder": "",
"style": "IPY_MODEL_3a4856d6bfd14c2a9ce277b42b2b963c",
"value": " 4/4 [00:04<00:00, 1.06s/it]"
}
},
"d0065db588724c628b0da4ab4b33b280": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9e6006f7244441ab8f1616010608f363",
"placeholder": "",
"style": "IPY_MODEL_8fb1891685ab41b4b824eb66354d46d4",
"value": " 81/81 [00:50<00:00, 1.26it/s]"
}
},
"e3c4e503194b487ab89eebf9c7285213": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_292776b320e14d47b54649e7e9624fb3",
"max": 81,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_6e41f043d3a04854891539aaf55ad008",
"value": 81
}
},
"e464f5c4fd924747b29d5857427ab9cd": {
"model_module": "@jupyter-widgets/output",
"model_module_version": "1.0.0",
"model_name": "OutputModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/output",
"_model_module_version": "1.0.0",
"_model_name": "OutputModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/output",
"_view_module_version": "1.0.0",
"_view_name": "OutputView",
"layout": "IPY_MODEL_6ce97aeb113543a58e4f89eed32ca72d",
"msg_id": "",
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACnwAAACECAYAAACwcBdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpNElEQVR4nO3dd3gU1dvG8XvTExJCDb0oHZQmoID0pgIiVaQjzYagKCjSBEXFClL80QVUECkCKiIivUvvvUgJNXQI2Zz3j7w7ZkmAgJBZst/PdXGxOzs788wkeebMzDPnOIwxRgAAAAAAAAAAAAAAAAAAAPBYPnYHAAAAAAAAAAAAAAAAAAAAgFuj4BMAAAAAAAAAAAAAAAAAAMDDUfAJAAAAAAAAAAAAAAAAAADg4Sj4BAAAAAAAAAAAAAAAAAAA8HAUfAIAAAAAAAAAAAAAAAAAAHg4Cj4BAAAAAAAAAAAAAAAAAAA8HAWfAAAAAAAAAAAAAAAAAAAAHo6CTwAAAAAAAAAAAAAAAAAAAA9HwScAAAAAAAAAAAAAAAAAAICHo+ATAAAAAAAAAAAAAAAAAADAw1HwCQAAAAAAAAAAAAAAAAAA4OEo+AQAAAAAAAAAAAAAAAAAAPBwfnYHAM8wdepU9enTRxcuXLhny7xy5YouXLigsLAwBQcH37PlAnfqfv0uhoWFacCAAWrUqNE9W2ZKde3aNS1btkwrVqzQ5s2btW/fPp08eVKXL1+2OzQAklKlSqWIiAjlyZNHRYsWVfny5fX444/L39/f7tBSvJMnT2rhwoVas2aNtm3bpkOHDunMmTO6fv263aEBXs/Hx0fh4eHKmjWr8ufPr5IlS6pSpUrKnz+/HA6H3eGlaMYY7dy5U4sWLdK6deu0a9cuHT16VOfPn1dsbKzd4QG4xxwOh8LCwpQ5c2blzZtXxYsX15NPPqkSJUrIx4dn1e+3w4cPa+HChVq7dq127Nihf/75R1FRUYqJibE7NMDr+fn5KU2aNMqePbsKFCigUqVKqXLlysqZM6fdoaV4sbGx2rBhg5YsWaINGzZoz549On78uC5cuCBjjN3hAQ8UHx8fhYWFKWvWrMqXL59KlCihihUrqkiRIpxb36Vjx47p+eef186dO+0OBQAAJLPHH39ckydPVkhIiN2hwGYOw9kpJBUqVEg7duywOwzggVOwYEFt377d7jA8kjFG8+fP17hx4zRr1ixdunTJ7pAA3IHw8HDVr19f7dq1U/ny5bkAew9dunRJ33//vSZOnKilS5dyswh4wOTNm1cvvPCC2rdvz832e+zAgQMaM2aMfvjhB+3du9fucADYLFOmTGrSpIk6dOigRx991O5wUpTTp09r/Pjx+u6777R+/Xq7wwFwh4oXL67mzZurTZs2ypAhg93hpChbtmzRqFGj9OOPP+r48eN2hwOkaLly5VLTpk3Vvn175c2b1+5wHigffvihevXqZXcYAADAJgsWLFCVKlXsDgM2o+ATkqTs2bPryJEj8vHxUZYsWe7JMo8dO6bY2Nh7ukzgbtyP30XXMrNly6Z//vnnniwzpTDGaPr06erXr5+2bNmS6DwOh0Pp06dXaGgoRWSAzWJjY3Xx4kWdPn36pvOULl1a/fv3V61atfib/Q8uXryoL7/8Ul9++aXOnj2b6DwBAQFKnz69AgMD2deAzWJiYnT27FldvHgx0c99fX31wgsvqF+/fsqTJ08yR5ey7NmzR3379tXkyZNv2oNnWFiY0qRJIz8/BioBUhqn06nz588rKirqpvPUqlVLAwYMUOnSpZMvsBToxIkTGjhwoEaOHKkrV64kOk9wcLDSpUungICAZI4OwI2io6N15syZW/69dujQQe+9954iIiKSObqUZe3aterdu7fmzp1703nSpEmj1KlTy9fXNxkjAx58TqdTUVFROn/+fKKfOxwONWzYUP3791ehQoWSOboHU8eOHTVq1ChJcfd3GaUJAICU78SJE1YHW2vWrFGpUqVsjgh2o+ATkv4t+LyXxWv3Y5nA3eD3O/ns3LlTnTp10qJFi9ymp0uXTnXr1lXVqlVVunRp5cmTh5tHgIe5du2adu3apTVr1mj+/PmaM2eOLly44DbPM888oxEjRtCj3V2YPn26OnfurKNHj7pNL1iwoOrWrauKFSuqePHiypYtG4WegIeJiorSli1btHz5cv32229avHixW1FiQECAunfvrl69eikwMNDGSB88V69e1YABA/Tpp5/q+vXr1nQfHx9VrlxZTz31lMqVK6ciRYooTZo09gUKIFlcunRJ27dv16pVqzRv3jz9/vvvunbtmts8bdu21eeff660adPaFOWDKTY2Vt98843efffdBMUWpUqVUu3atfXkk0+qaNGiypgxI+1RwIMYY3Ty5Elt3rxZS5Ys0a+//qo1a9a4zZM6dWp9+OGHeuWVV+Tj42NTpA+ms2fP6q233tLYsWPdpgcGBqpmzZqqWbOmnnjiCRUqVEipUqWyKUogZTh//ry2bt2qFStWaO7cuVqwYIGcTqf1ua+vr7p06aIBAwYwROlt1KlTR7/88oskKTIykqJ/AAC8QL169TRr1ixJ0pEjR5Q1a1abI4LdKPiEJArikLLx+508xowZo86dO7v1OvDEE0+oW7duevbZZynwBB4wV65c0U8//aTPP/9cGzdutKanTp1aY8aMUaNGjWyM7sFx+fJlvfrqqxo/frw1zdfXV82bN1fnzp312GOPcUMdeMAcPXpUo0aN0tdff+3WO3KxYsU0depU5cuXz8boHhw7d+5U48aNtXnzZmtahgwZ9Prrr6t9+/aMEgFAUVFRmjRpkr744gvt37/fmp4tWzZNnjxZTz75pI3RPThOnjypFi1aaN68eda04OBgdezYUa+88ory589vY3QA7sauXbs0fPhwjRo1SpcvX7am16hRQ5MmTaLwJ4mWLVumpk2bul3bzZ07t9588021bNmSB46A++zEiRMaO3asBg8erOPHj1vTCxQooKlTp+rRRx+1MTrPVrJkSa1fv15+fn66du0axf4AAHiB0qVLa+3atXI4HIqOjmYkLIgWIADgP3E6ndaNeVex58MPP6xZs2Zp+fLlatSoEcWewAMoODhYLVu21Lp16/TDDz9YT4qdP39ejRs3Vr9+/cRzQ7d2/PhxVahQwa3Ys3bt2tq+fbu+/fZblSpVimJP4AGUNWtW9e3bV/v379e7775rDZ22ceNGlS5dWn/99ZfNEXq++fPnq0yZMlaxp7+/v9577z3t379fvXv3ptgTgKS4oXNfe+017dy5U0OGDFHq1KklxfViUKVKFY0bN87mCD3f9u3bVbp0abdiz7Zt22rfvn366quvKPYEHlD58+fXV199pb179+rFF1+0pv/xxx8qXbq0tm7damN0D4Zvv/1WVapUsYo9U6dOrcGDB2vnzp3q3LkzxZ5AMoiIiNA777yjvXv3qn///goKCpIU93Bg2bJlNWfOHJsj9FzHjh2TJGXOnJliTwAAvITr+J8pUyaKPSGJgk8AwH/gdDrVunVrff3119a0l156SZs3b1bdunUpZAJSAB8fHzVt2lTbtm3TCy+8YE1///331bVrV4o+b+LIkSOqUKGC1q1bJ0lKlSqVJkyYoNmzZ9P7H5BChIWFaeDAgVqzZo0KFSokSTp37pyeeuop/frrrzZH57lmz56tZ555xhpSuEiRIvr777/1wQcfKDQ01OboAHgif39/de7cWVu3blWVKlUkSTExMXrxxRc1ZMgQm6PzXBs3blSFChV08OBBSXE3BObNm6exY8cqc+bMNkcH4F7InDmzxowZo/nz51sPzBw6dEgVK1bU+vXrbY7Ocw0dOlRt2rTR9evXJUmVKlXS1q1b9frrr/PQOmCDkJAQ9e7dWxs2bFCJEiUkSZcuXdJzzz2nKVOm2Byd54mJiVFkZKQk8bAkAABewul0Wj2ic/yHCwWfAIC7YoxR586d9d1330mS/Pz8NGbMGI0YMUIhISE2RwfgXgsPD9d3332nzz//3Jo2ZMgQ9e3b18aoPNPZs2dVo0YN7dmzR5KUM2dOrVy5Ui1btqQQHkiBihUrplWrVql27dqSpOjoaDVs2FDLli2zOTLPs3jxYjVu3Ni6uf7ss89q5cqVDNUHIEmyZ8+uefPmqXPnzta0Ll26aMKECTZG5Zn27dunmjVr6vTp05KkEiVKaN26dapRo4bNkQG4H6pVq6a///5bjz32mCTpzJkzqlWrlnVOin9NmjTJ7Tjy6quvav78+cqePbuNUQGQ4oZyX7ZsmZ5//nlJcYUNLVq00Ny5c22OzLOcOHHCegDfNSITAABI2U6dOiWn0ymJ4z/+RcEnAOCuDB8+XCNGjJAUV+z5008/uQ0jBSDlcTgcevPNNzV+/HircHHAgAGaPHmyzZF5DqfTqaZNm2r79u2SpIcfflhLly7VI488YnNkAO6nsLAwzZgxQ02aNJEkXb16VfXr19fhw4dtjsxzHDx4UA0aNNC1a9ckSc2aNdO0adPo1RPAHfHz89PgwYPVu3dva1r79u21YsUKG6PyLBcvXlTdunV14sQJSVLZsmW1cOFCbggAKVyWLFm0YMEClStXTpJ08uRJPfvss7p48aLNkXmOVatWqV27dtb79957T19//TXDIQIeJDg4WN9//73at28vKa43y+eff167du2yOTLPcfToUes17TsAALwDx38khoJPAMAd27hxo958803r/bhx41SvXj0bIwKQnFq3bq0vvvjCet+hQwft37/fxog8x6effqp58+ZJkjJmzKg//vhDOXLksDkqAMnB399fkyZNUvXq1SXF3WRv0aKFYmNjbY7Mfk6nU82aNbN6mqtVq5bGjx/PzXUAd8XhcOj999/XK6+8Ikm6fv26XnjhBZ07d87myDxDly5dtG3bNklSwYIF9csvvyh16tQ2RwUgOaROnVq//PKLChcuLEnavn27Xn/9dZuj8gznz59X06ZNFR0dLUl66aWXNGDAAEbhADyQj4+PvvnmG9WvX19Swr9fbxe/4IMhXQEA8A4c/5EYCj4BAHfE6XSqXbt21gWWN954Qy1atLA5KgDJrUuXLmrZsqWkuF6EOnbsaA0n5K127dplDXHv4+OjKVOm6OGHH7Y5KgDJyd/fX1OmTFGuXLkkxQ1h7uoR3ZsNHTpUy5cvlyQ99NBDmjx5svz9/W2OCsCDzOFw6KuvvtKTTz4pKa4X4XfffdfmqOw3f/58jR07VpIUGhqqn3/+WWnTprU5KgDJKU2aNJo5c6bCwsIkxT2k7Xoo0Zv17NlTBw4ckCSVK1dOQ4YModgT8GC+vr6aMGGCChUqJElav369Pv30U5uj8gzHjh2zXtPDFwAA3oHjPxJDwScA4I6MHz9ef//9tySpSJEi+uijj2yOCIAdHA6Hhg0bppw5c0qKu7k8a9Ysm6OyV7du3axi+G7duqlKlSo2RwTADunSpdO3335rve/du7fOnj1rY0T2On36tFUML0kTJkxQmjRp7AsIQIrh7++viRMnKlWqVJKkb775Rps3b7Y5KvvExMSoS5cu1vsvvvhC+fPntzEiAHbJly+fvvzyS+t9ly5dFBMTY2NE9tq6dav1EFZISIgmTZrEw0fAAyA0NFSTJk2Sr6+vJOnDDz90693KW9HDFwAA3ofjPxJDwScAIMmuX7+u999/33o/fPhwBQYG2hgRADuFhYW53UTq3bu31/byuWrVKs2ZM0eSlD17drfiJgDep1KlSlYvyGfPnnXLld7ms88+s4ZZfvHFF63e+ADgXsidO7f69OkjSTLGqF+/fvYGZKMpU6ZYQ7k//vjjateunc0RAbDTiy++qHLlykmSduzYoR9++MHmiOzTr18/xcbGSpJ69eqlhx56yOaIACRVyZIl9eqrr0qSrly5oo8//tjmiOwXv+CDHr4AAPAO9PCJxFDwCQBIsqlTp+rw4cOSpGeeeUYVK1a0OSIAdqtfv77KlCkjSdq8ebPmz59vc0T2+OKLL6zXffr0sXqaAuC9BgwYID8/P0nSsGHDdOXKFZsjSn6XL1/WN998IymuJ774Dw4BwL3SuXNnq3eDGTNmaO/evTZHlPyMMfr888+t9x999JF8fLjsC3gzh8PhNirP559/7pUPaO7fv1/Tpk2TJGXKlMmtJ2QAD4ZevXopJCREkjRmzBivHkFDouADAABvxAMfSAxX/gAASTZ69Gjr9dtvv21jJAA8hcPhcMsH8fOEtzh9+rRmzJghSYqIiFCrVq1sjgiAJ8iVK5eef/55SdKZM2c0c+ZMewOywbRp0xQVFSVJatasmbJnz25vQABSpODgYHXu3FlSXOHj2LFjbY4o+a1fv17r16+XJJUqVUqVK1e2NyAAHqFChQrWA5obN27U2rVrbY4o+Y0bN84qdO3cubNVNAbgwZExY0a1bdtWUtxDhd7cY7H0b8GHn5+fMmTIYHM0AAAgObiO/w6HQxERETZHA09BwScAIElOnDihhQsXSpLy5s2rSpUq2RsQAI9Rr1496wLj7NmzdfnyZZsjSl4zZszQ9evXJUktW7ZUYGCgzREB8BTt27e3Xv/44482RmKP+Nscf18AwL3Wtm1bq0fLqVOn2hxN8rsx3zocDhujAeApHA4H7dH/32YfHx+rYAzAg8fbc1l8rh4+M2fOTI/uAAB4CdfxP1OmTNaoYgAtQQBAksybN896Ir5Ro0bcQAJg8ff313PPPSdJunLlihYvXmxvQMls7ty51uvGjRvbGAkAT1OxYkXrids//vjDKg73BtHR0frzzz8lSVmyZFG5cuVsjghASpY5c2ZVqFBBkrR7926vG9bd1R51OBxq0KCBzdEA8CQNGjSwCoLin7t6gwMHDmjnzp2SpPLlyzP0IfAAK1asmPLmzStJWrp0qS5cuGBzRPaIiYlRZGSkpLjzbAAAkPI5nU4dP35cEsd/uKPgEwCQJEuXLrVe16hRw8ZIAHii6tWrW6+XLVtmYyTJyxhjbW94eLhKlSplc0QAPImPj4+qVq0qSbp06ZI2bdpkc0TJZ/369bpy5YqkuGMEPY8AuN/it0fjn7+mdOfPn7eOLyVKlFDGjBltjgiAJ0mfPr1KliwpSdqyZYuioqLsDSgZcS0TSDkcDof1d+x0OrVq1SqbI7JHZGSk1SkHRewAAHiHU6dOyel0SuL4D3fccQEAJMnGjRut16VLl7YxEgCe6PHHH7deb9iwwb5AktmJEyesJ+tKlSolX19fmyMC4Gm8NT/G39YyZcrYFwgArxE/38Y/f03pNm3aZN34J98CSEz83OBNDyDFb49yLRN48MXPZd7U1ovPNZyrRMEHAADe4ujRo9Zrjv+Ij4JPAECSuIbEy5Ytm8LCwmyOBoCnyZkzp4KCgiRJ+/btszma5BN/uNCCBQvaGAkATxU/N3jTEMPkRwDJzVvzbfy2N/kWQGLIj1KhQoVsjATAveCtuSy++AUfDOkKAIB34PiPm6HgEwBwW06nUydPnpQUV/AJADfy8fGxTjQiIyNtjib5xN9W8iOAxMTPDSdOnLAxkuRFfgSQ3OJf9Pam9qirt3mJnh4AJC5+W8yb8mP8bSU/Ag8+b81l8dHDJwAA3ofjP26Ggk8AwG1duXLFek3vngBuxpUfLl26ZHMkySf+toaGhtoYCQBPFT83kB8B4P7x8/NTSEiIJOny5cs2R5N84udbztcBJCZ+bvDG9mhgYKD8/f1tjgbAf+WtuSw+evgCAMD7cPzHzVDwCQC4LWOM9drHh0MHgMT5+vpKkmJjY22OJPnEz4+u7QeA+OLnBvIjANxfrvNV8i0A/Cv+tbz4OSOlcx0LyI1AyuCtuSy++AUf9PAFAIB3oIdP3AxVOwAAAAAAAAAAAAAAeCgKPgAA8D488IGboeATAAAAAAAAAAAAAAAP5Sr48PPzU4YMGWyOBgAAJAfX8d/hcCgiIsLmaOBJKPgEAAAAAAAAAAAAAMBDuXr4zJw5s9sQ9wAAIOVyHf8zZcokPz8/m6OBJ6E1CAAAAAAAAAAAAACAB4qJiVFkZKQkKUuWLDZHAwAAkoPT6dTx48clcfxHQhR8AgAAAAAAAAAAAADggSIjI2WMkSRlzZrV5mgAAEByOHXqlJxOpySO/0iIgk8AAAAAAAAAAAAAADyQazhXiYIPAAC8xdGjR63XHP9xIwo+AQAAAAAAAAAAAADwQPELPhjSFQAA78DxH7dCwScAAAAAAAAAAAAAAB6IHj4BAPA+HP9xKxR8AgAAAAAAAAAAAADggejhCwAA78PxH7dCwScAAAAAAAAAAAAAAB4ofsEHPXwBAOAd6OETt0LBJwAAAAAAAAAAAAAAHoiCDwAAvA8PfOBWKPgEAAAAAAAAAAAAAMADuQo+/Pz8lCFDBpujAQAAycF1/Hc4HIqIiLA5GngaCj4BAAAAAAAAAAAAAPBAroKPzJkzy8eH2/sAAHgDVw/fmTJlkp+fn83RwNPQIgQAAAAAAAAAAAAAwMPExMToxIkTkqQsWbLYHA0AAEgOTqdTx48fl8TxH4mj4BMAAAAAAAAAAAAAAA8TGRkpY4wkKWvWrDZHAwAAksPJkyfldDolcfxH4ij4BAAAAAAAAAAAAADAw7iGc5Uo+AAAwFtw/MftUPAJAAAAAAAAAAAAAICHOXr0qPWaIV0BAPAOHP9xOxR8AgAAAAAAAAAAAADgYeIXfNDDFwAA3oEePnE7FHwCAAAAAAAAAAAAAOBh4hd80MMXAADegR4+cTsUfAIAAAAAAAAAAAAA4GHo4RMAAO/D8R+3Q8EnAAAAAAAAAAAAAAAehiFdAQDwPhz/cTsUfAIAAAAAAAAAAAAA4GFcPXz5+fkpQ4YMNkcDAACSg+v473A4FBERYXM08EQUfAIAAAAAAAAAAAAA4GFcBR+ZM2eWjw+39gEA8AauHj4zZcokPz8/m6OBJ6JVCCSiTZs2cjgcCf4FBwerePHi+vLLL+V0Ou0O08348ePlcDi0dOlSu0MBcBN79uxRly5dVKBAAYWGhiowMFC5c+dW27ZtdejQIUnSwoUL5XA4NGnSpGSJ6W5zBzkHwL1EfgSAO7d+/Xq1bt1auXPnVlBQkFKnTq1SpUrpgw8+0Llz5+56uZUrV1bevHmt97lz51b16tXvRcgJtGnTxu2CZb9+/RI9F4//76233rovsdyt5D4+Afjv7lf+vJ3b5dMb8+9/Xdft8umWLVvuybrulRuPCQDuH9f9j/r16990nmXLlln5Qvq3nfbPP//c0boqV64sh8OhN95446bzfPfdd3I4HMqdO/cdLftOLFq0SE2aNLFyf6pUqfTII4+oZ8+eunr16n1Zp8PhUPv27e/LsuE9YmJidOLECUlSlixZbI4GKdXff/+tVq1aWTkyKChIBQoUULdu3bR///77vv74+fLAgQNyOBz64IMP7vt6468//r+AgABlz55dTz/9tJYtW5ZscSTVvTxvuJHrGseN//z8/JQ9e3a9+OKLOnz48H1ZN4B/OZ1OHT9+XBLDuePmKPgEbsLX11fHjh1z+7dq1SrVr19fb731ll5++WW7Q7wnNm7caF20AXD/7NmzR4899phWr16tL7/8Utu2bdPGjRvVv39//fHHHypfvrxOnjypcuXK6dixY2rUqJHdIT+w6tevr379+tkdBoAkIj8mH/IjkHIMGzZMpUuX1sWLFzVy5Ejt3LlTq1evVseOHTV69GgVL15cu3fvvifrWrNmjaZOnXpPlpVU69atS3A+7vrXt2/fZI0FQMqSnPkzufz888+JFklVqFDhprn02LFjKliwYPIHC8BjhIaGas6cOVbPQTcaNWqUUqVKZb1/6623dOzYsbu64RwaGqoJEybctLDyxnXda1OmTFGVKlUUGBioyZMna8+ePVqxYoWaNWumzz//XM8999x9WzfwX0VGRsoYI4mCD9wfgwcPVpkyZeR0OjV27Fjt3LlTa9euVffu3TVz5kyVLFlSK1asSLZ4cuTIoWPHjt3yQYH/YvDgwapcuXKC6c2aNbPayXv27NGECRN05swZValSRdu3b78vsSSFMUbp06fXwoULrWnTp0/XypUr7+t6hw4d6nbusGvXLn355ZdatGiRnnjiCZ06deq+rh/wdidPnrQ6oOOBD9wMj8wCt5A5c+YE74sWLaojR45o9OjR+uCDDxQREWFTdPfG4sWL7Q4B8ApjxozR+fPnNXPmTGXKlMmaXrBgQRUsWFAdOnTQqlWrVKdOnQS5B0lnjNHSpUtVrFgxu0MBkETkx+RBfgRSjiVLluj111/Xm2++qU8//dTts4IFC+q5555TmTJl1LBhQ23YsOE/D/mXMWPG//T9u10nOR/AvZbc+TO53OzaXkBAALkUwE2VKFFC27dv15gxY9SrVy+3z86dO6epU6eqVq1amjFjhqS4os3Q0NC7WleVKlX022+/6aefflKLFi3cPtu1a5cWLVqk+vXra926dXe3Mbfx1VdfqWDBgpo4caI1LXv27CpatKhCQ0M1ZcoUHTx4ULly5bov6wf+i/hF2RR84l5buHCh3njjDb333nsaMGCA22ePPPKInnvuOZUsWVIjRoxQ2bJlkyUmX1/f+9qGvVnbOTg42G29OXPmtB4WmzNnjgoVKnTfYrqVLVu26MyZM27T0qVLd9/XGx4enuDn8PDDDytbtmwqX768xo0bp7fffvu+xwF4K47/SIoH46oV4GGKFy8uY4w1xKgU1yiuUaOGUqdOraCgIOXPn18DBgxQTEyMJKlly5YJulcfNmxYot3SlylTRs8+++xN179u3To9+eSTCgoKUkREhDp37qwrV64kmG/69OkqV66cUqVKpZCQED3yyCMaPny49XmbNm30+uuvS4rrrr5NmzaSpDNnzuill15StmzZ5O/vryxZsqhRo0bau3fvne0oABbX3+jly5cTfFamTBlt3LhRderUSTAkZPyhgevWrauwsDBlyJBBPXr00LVr19S1a1dFREQobdq0atq0qc6fP28t1+Fw6O2339aXX36p3LlzKzAwUEWKFNHMmTNvGevmzZtVr149Zc+eXcHBwSpatKjGjh172210OBzq1auXBg4cqOzZsyskJESVK1fW4cOHNXPmTD3yyCMKCQlR8eLF3YbBaNOmjTJmzKj169erXLlyCg4OVsaMGdW1a1dFR0e7Lf/GYZCWLl0qh8Oh8ePH68CBA/Lx8dGpU6f0/vvvy+Fw6MCBA0nepty5c6tNmzbq3r27wsLCknXIEMCbkR/JjwDuzMcff6wMGTLoww8/TPTziIgIDRw4UJs3b9bs2bOtfPnLL7/okUceUUBAgDXvjXnwxx9/TLC8G4cgdjgc6tevn4YOHap8+fIpODhYhQoV0pQpU9y+d7tz5P/KdVyYO3euXnvtNWXOnFlhYWGqUKGC1q9f7zbv4sWLValSJYWGhioiIkINGjTQjh073OYZMWKEHn30UQUFBSk0NFRPPvmkfvnlF7d59u3bp6efflohISFKmzatWrRokeDGiyQdOnRIzZo1s4bDy58/vwYNGqTY2FhrnsqVK6ty5coaPHiw0qVLx3CfQDK42/y5bt06NW/eXOnTp1eaNGn09NNPJxjacubMmapQoYLSpUunsLAwVa5c+Z4M/7hgwQJVrlxZYWFhCgoKUuHChfX5559bPX1VrlxZX3zxhQ4ePGjl5zvVpk0b5c6dWxs3blTlypUVGhqqLFmyqFOnTm7XG2NiYvTRRx8pX758CgoKUt68edWnTx+3dumJEyfUoUMHZc2aVf7+/sqcObNatWqlI0eOuK3z+++/V4ECBRQYGKg8efJo6NChicZ2u/3qGvJz6NCheuqppxQUFKQlS5bc8T4AvJGPj4/q1aun0aNHu7VRpLgh1n18fFSzZk1r2o1Duic1d0hxhSmVKlXS//73vwRxjB49Wnnz5lXRokUTfDZy5EiVKFFCwcHBSp06tUqVKuXW8/zs2bPdrhO41KxZUzlz5tTZs2clxV13iI6OTrQd+vrrr2vZsmVuxZ6bN29W7dq1FR4errRp06pmzZpatWqV9XlsbKw++ugjFSxYUAEBAUqbNq0qVKigP//8M+GOjufKlSvq0aOHChcurODgYGXJkkUvv/yyFWf8/bxw4UI9/PDDypcv3y2XiZTv6NGj1mt6+MK99tFHHylTpkw3HUkjffr02rt3ryZMmCBJt7y+cLucLcXlwU6dOil9+vQKCQlRpUqVtGnTJrd5EhvS3XXf2tUOzZUrl9599123nqOTclzKnTu3pk+frkWLFlnXTW/FNUJm2rRp3aZPnTpVZcqUUUhIiIKDg1WyZEl9++23bvPExMRowIAByp8/vwICApQmTRrVrFkzQW+pEyZM0GOPPabUqVMrNDRUJUuW1Lhx46z97To+VqlSxerV/8Yh3V3Xbn/88Uc9+uijCg4O1sMPP6whQ4a4rWvt2rUqX768Vdzao0cPTZ061brGnhTFixeXJB08eNCa5nQ69cknn6hYsWIKDQ1VhgwZ1KxZM6vN4DJv3jwVL15cgYGBypkzpz799FN9+eWXibYvpkyZoqxZs7pdjxo9erRKly6t1KlTK02aNKpbt662bduW5P0pSdevX1evXr2s61np0qVTjRo1tHz5crflJOVn7HA41Lt3b7Vs2VIhISEJ2iPAf8HxH0lBwSdwF7Zt2yYfHx+rYXXo0CE99dRTCg8P14oVK7Rz50717t1b/fv318cffyxJevrpp7V37163xs0ff/yhnDlzasGCBda0qKgorVu3TrVr10503efOnVOtWrV07tw5zZ8/X4sXL1b69OkTXKxeuXKlGjVqpJIlS2r9+vXasmWL2rZtq1dffdVqcAwePFjNmjWTFPeUwODBgyVJzZs318yZMzVhwgTt27dPM2bM0N69e/XMM89YXUcDuDN16tSRJFWsWFHDhg1zOxlKijfeeEOtWrXShg0b1KJFCw0aNEjVq1dXRESEli9frqFDh2rKlCkJbpL8+OOP2rhxo+bMmaMVK1Yoa9asaty4sbZs2ZLoevbv368KFSroyJEjmjx5sjZs2KBGjRqpXbt2Gjly5G3jnDx5siIjI/Xnn39q+vTpWr16tRo3bqxhw4ZpwoQJWrZsmaKjo9W2bVu37507d06vv/66BgwYoE2bNql79+4aMmSI+vTpk+R9lCNHDqsngG7duunYsWPKkSPHHW3TsmXLdPToUa1Zs0avvfZaktcN4O6RH8mPAJLO6XTqr7/+Us2aNd1urNyobt268vX11bx586xpffv21cCBA7Vnzx5JcTfy33zzTdWrV08bN27UqFGjNGLEiCQNVfbjjz9q9erVVj5Lnz69WrdubV2MTMo58r3SvXt35cyZU0uWLNGsWbO0a9cutWrVyvp81apVql69ugoVKqQVK1Zo7ty5OnXqlKpVq6aoqChJ0sCBA/Xqq6+qYcOGWr9+vZYtW6Zs2bKpbt261vm60+lUnTp1tGXLFs2YMUOrV69WmTJl9NZbb7nFExUVpQoVKmj16tX65ptvtGXLFr3++uvq3bt3gt6zDh06pLlz52rhwoX3fL8AcPdf8menTp1UpUoVrV69WhMnTtTChQutB6iluAeu69evb+Ui17W66tWra+PGjXcd85IlS1SzZk2lS5dOf/31lzZt2qQWLVro7bfftgo7p0+frgoVKih79uw6duxYgpyUVBcuXNArr7yid955R5s2bVLnzp01cuRItwfHu3Xrpo8++kh9+vTR1q1b9fHHH+uLL75Q165dJUnR0dGqVq2afv/9dw0bNkw7d+7UmDFjtHjxYlWtWlXXrl2TFPdgUosWLVS8eHH9/fffmjp1qhYsWKA//vjDLaY72a9DhgxR9erVtXPnTpUqVequ9gHgjVq1aqWDBw/q999/d5s+atQoNW7cWEFBQbf8flJyR/x1LV261K2tef36dX377bdq2bJlgvmnTJmiTp06qVGjRtq6dav+/vtvVapUSc8//7zVO1vdunX18ssvq2vXroqMjJQkjRs3Tn/++acmTZpkFejUqVNHe/fuVYUKFTR16tREH9hxcZ0nBwQEaMGCBVq2bJnCwsJUvXp1q0OMTz/9VD179lT37t21Z88eq2C0Tp062r17902X/fzzz2vo0KF68803tXXrVo0cOVKzZ89WnTp1rEJ+l/79+2vs2LFatGjRTZcH7xC/4IMevnAvxcTEaPHixapVq5b8/G4+KGxin914fSEpOVuKK7IfP368PvroI23atElvvvmmOnTocNs4a9SooenTp2vgwIHatm2bBg4cqBEjRujFF190m/d2x6U1a9Yod+7cKlu2rI4dO6bnn38+0XUaY7R371716NFDefPmdZvv+++/V5MmTfTYY49p5cqV+vvvv1WhQgW1adPGrbDwlVdesa41bN26VfPmzVNMTIyqVq1qHQsXLlyo1q1bW9ciNm7cqGbNmqldu3aaOXOmddyQpGnTpmnNmjU33U+rVq3S+PHjNW7cOG3YsEElSpRQly5dtHbtWklxRbO1atXSqVOn9Ntvv+nPP//UyZMn1bt371vu/xu5Cizz5MljTXvjjTfUs2dPNWvWTBs3btSPP/6oTZs2qXLlylYnD7t27VLdunUVEhKixYsX6+eff9bChQsTfRjk8uXLGj58uH7++Wd99913kqQvvvhCHTp0UMWKFbV27VrNnTtX586dU8WKFa08ebv9KcVd//nqq680aNAg7dixQwsXLlSWLFlUrVo1HT9+/I5+xlLcNf9MmTJZnSoA9wo9fCJJDGCMyZYtm5FksmXL5tHLTC6tW7c2vr6+CaZfvHjRjB8/3gQGBpo2bdpY069evWp27NhhoqKi3OYvXbq0efzxx40xxpw6dcr4+PiYCRMmGGOMuX79ukmdOrX59NNPTVBQkLly5Yoxxpjp06cbSebQoUOJxjZ27FgjySxevNht+nPPPWckmSVLllixbt261Vy+fNltvowZM5rnn3/eet+uXTtzYyo4dOiQ2b9/v9u0YcOGGUlm+/bticblyfj9vjuvvvqqGThwoNm0aZM5d+6ckWQkmRo1atgd2gPr22+/NZkzZ7b2ZbZs2UyzZs3M5MmTTXR0tDHGmL/++stIMhMnTjTGGDNu3DgjyXzwwQfWciIjI40kU7VqVbflFypUyNSvX996L8lkzpzZXL9+3Zq2b98+I8m8++67bst35Y7XXnvN+Pn5mX/++cdt2XXr1jXZsmUzsbGxiX7Ptb78+fNb8xhjzNNPP20kmYMHD1rTPvnkEyPJnDt3zhgTl3MlmdmzZ7uts1KlSiZLlixuy2/Xrp3bPEuWLDGSzLhx44wxxhw+fNhIMn379rXmSeo25cqVywQHB5sLFy4Y3J0SJUoYSSYgIMDuUO6bEydOmPr165uxY8ea48ePmwkTJlh/08OGDbM7vAcW+TEO+TFlOnjwoPW73aRJE7vDuW9++ukn8/LLL5tff/3VXLlyxTRo0MDa7iNHjtgdXopx/PhxI8n06tXrtvNmypTJ1K1b18pLvXv3dvu8YsWKJk+ePG656eTJk8bf39/kyZPHmpYrVy5TrVo1670k89BDD7nl0J9++sktXyXlHNmYhOfeffv2NZJMSEiISZUqVaL/Ll68aIz597jQsmVLt3W89tprRpKVs5577jmTI0cOt+3cvn27adasmVmzZo2Jjo424eHhplGjRm7LiY6ONpkzZza1a9c2xhizYMECI8k6p3fp2rWr2/Hps88+M5LMqlWr3Obr3LmzCQwMNOfPnzfGxOVySWbv3r0G905oaKiRZIoUKWJ3KPfN2rVrTYsWLcyUKVNMVFSU6d27t5Vv582bZ3d4Hute5s86deqY9OnTW+8feeQRU6RIEbc8c/nyZRMREWGaNWtmTcuVK5fx9fW9aX7z8fFxy79PP/20yZIli9UedmnYsKEJDw+38nC1atVMrly53Oa53bpatGhhzetqc/7555/WtNjYWJM6dWrTsGFDY8y/x4f33nvPbT0jRowwL730knE6nWbKlClGkpkzZ47bPLNnzzaSzNSpU40xxrRq1cqkSpXK7ZrltWvXTEREhNsxISn7df/+/UaSqVChgsHNzZ8/38oTN/4MU5LBgwebt956yyxatMhcv37dPProo1a7Au5at25tKlWqZIwxJl++fKZevXrWZ6tXrzaSzKJFi6w8aMy/7bTDhw9by7hd7jAmrs3TunVrc+nSJZM6dWrTpUsX67Mff/zROBwOc+DAAdO3b1+3XBYVFWU2bdpknE6nNe3SpUtGkunRo4c17fLly6ZQoUKmYcOG5tixYyZt2rQJfs+jo6PN22+/bYKCgowk43A4TJEiRcxrr71mFi1a5DZv165dTXBwsNVmM8aY06dPm6ZNm5rffvvNGBN3r2fr1q1u39u6dauRZEaMGGFNi3+uvnbtWiPJfPLJJ27fmzZtmtsx3LWfx4wZY+Au/j2KmjVr2h3OfTN37lzTvn178/PPP5tLly6ZPn36WNv9yy+/2B0eUhBX+/jGtu6t3Kx9nJScffnyZRMUFGRefPFFt+/OnDnTLV+62ncDBgwwxvx7vWHKlClu3/v888+NJLNr1y5jTNKPS3ny5LGOgS6SjJ+fn9VWDggIMJLMo48+ajZu3Og2b6FChUypUqUS7JvHHnvMOg89evSo8fHxMW+99ZbbPKdPnzb+/v7m1VdfNcb8ey34+PHjbvOtXr3amjZx4kQjyfz111/W55UqVUpw3SYsLMztGozruPP1118bY4wZNWqUkWQWLFjgtq7HH3/c7Vr2jdfgXZxOp1m3bp0pXry4yZAhgzl16pQxJu73yNfX17z88stu8//9999Gkhk5cqQxxpj33nvPSDL79u2z5rl69arJmTPnbdsX169fN2nSpDFPP/202zqOHj1qAgICTM+ePZO8P59++mlTqFAht8+vXLliVqxYYV1vSsrP2Ji435ucOXO6na8A98r7779vHf9nzZpldzjwUDd/XANexTWszo3D63gzp9Op0NBQt2mXL19WRESEunbtqgEDBljTAwMDtXv3br355pvavHmzzp49K2OMrly5ooceekhSXLf3ZcqU0V9//aWWLVtq9erVunbtml566SUNGDBAy5cvV9WqVfXnn3/q0UcfVY4cORKNy9W1/WOPPeY2vWLFim7DkKZKlUp///23XnvtNe3cuVPnz5+XMUaXL1/WqVOnbrntsbGx+uyzzzR//nxFRkbq+vXr1nAnt/uut3B1/3/s2DFlz57d5mjuj9OnT+vq1avq2bOn25A2uHutWrXSCy+8oEWLFmnRokVaunSppk2bpu+//16PPPKIWw8iN4rfQ0XGjBklSSVLlnSbJ2PGjG5DAElS2bJl3Z7AfOihh5Q+fXrt27cv0fUsX75cjzzyiLJly+Y2vVatWpo9e7aOHz9+y67jS5YsaQ1z4YopQ4YMypkzZ4L4z549q9SpU1vTK1asmGCbFy1apKtXr962R4FbuZNtKly4cILcjzsXHR2dYnOj0+nU8ePHNWPGDDkcDj388MN2h5QikB/d4yc/plyzZ89Osfnx0qVLioqK0ogRI6zhrnHvufLIjcNu3m5+SSpTpozbZ5s2bVKNGjXc5smQIYMKFSqkS5cu3XK5ZcqUccuhERERkuLOIaSknSPfyu+//67MmTMn+llISIjb+3Llyrm9jx9LaGioVq5cqXLlyrltZ8GCBa1eIjZv3mz1ChGfv7+/ypQpo5UrV0q69bn4V199Zb1fvny50qRJk2B/16pVS19//bW2bNmismXLSoq7TkBb4t5yXbvYuXNnis23165d06lTpzRp0iT5+fnd9PoR3P2X/JlYnnHluwsXLmjLli3q2rWr23eCg4Ot3mfie/zxxxMMBejSvHlza7lSXC89lStXlr+/v9t85cuX17Rp07R7924VKlTopttwq3Ul1q5z5SYpbvszZMhgxfP333/r+vXrevzxx92+89JLL7nFKyVsu5YvX15SXI9KjRo10qZNm6zhjF0CAgL0xBNP6JdffpF05/v1xpyLmxsyZMhthy99UF2+fFlnz57VZ599Rlv0Drz44ovq1auXjh49qqxZs2rUqFF6+OGHVaFChZueH8d3q9wRX0hIiF544QVNmDBBH3/8sYKCgjRq1ChVrlw50WvPoaGhWrhwoTp27Kj9+/fr4sWL1mfx71EEBwfrhx9+0OOPP65t27Ypf/78Vi/ILv7+/ho0aJDee+89/f7771q6dKmWLl2qYcOGaejQoWrcuLEmT54sHx8frVy5UoUKFVJYWJj1/XTp0umHH35w25bp06erZcuWOnTokK5cuWL10Hmz+yeuoWJr1arlNt3VHl+7dq1q1KhhTSev3dqiRYtSbFvPlctGjx6toKAg6/xGYkhX3FuuNlZiIzs+9thj2rlzp9u03377zXp9Y45KSs7etWuXrl69mug59a3cLH/WqlVL3bp109q1a5UvXz5relKPSzeqX7++Bg4cKCmuh8/jx49r2rRpevzxx/XNN9+odevWunDhgrZv364333wzwffLly+vr7/+WpcvX9batWsVGxubYNvSpUunQoUKWT111qpVSwMGDFCFChXUoUMHVapUSaVKlVLp0qVvG++NChcurPDwcOv9jddpXL2x3vizq1evntWOj699+/Zubf3o6Ggr5smTJyt9+vSSpNWrV8vpdCb4+ZQsWVIZMmTQ2rVr1aFDB+3Zs0cZMmRwuyYUGBiop556KtHRs+LHuX37dkVFRSVYR5YsWVS0aFHr3CAp+7Nhw4Zq3769qlSpoubNm6tSpUrKly+fnnjiCUlK8s/YdW2qdOnSbucrwL3CkO5ICgo+gZvw9fXVhg0brPfnz59XtWrVVKFChQRDrc2ePVvPPvusatWqpXHjxil79uzy9fVNcKH26aeftrr6/uOPP1SuXDmFhoaqQoUKWrBggapWrar58+erfv36N43r/PnzcjgcCW5yxS8KkKShQ4eqc+fOatasmd5//31lypRJPj4+qly58i23+/Lly6pYsaKuXLmiTz/9VCVLllRwcLCmT5+uHj163PK73uTChQuS4m4UpORC6eDgYL3++uuqVq2aatasaXc4KYK/v7+qV6+u6tWrS4obqvfzzz/XgAED1LNnT7Vu3TrR76VKlcp67Tp5iD/NNd11cdElTZo0CZYVGhqaoPDJ5dy5c9q/f3+Cmz+uk/4jR47csmGZWEyJTZPkFqvD4UiQx1wxnD179j81Zu9kmxLbX7g7KTk3SnHH3ffff18xMTF6++237Q4nRSA/kh+9wZUrV1J8fkyfPr2GDh2q7777LsVvqx0yZMigsLCw2958v3jxok6ePOlWTHjj3/H58+cTLfhJnTr1bQs+b/zejfkrqefIN5M7d+4k38C9XSxnzpxxu2F/o3PnzkmS240Rl9SpU+v8+fOSZP1/4/puzNHnzp3TuXPnEsznKjKL/3dBbr33XDehYmJiUnwOSpMmjQYNGqRt27a5FR0jcf8lf94sz0j/5pBhw4Zp1KhRbvNFR0cnGD4+ODhYefPmTXTd8QsgXcu+WW6S/s1LN3Ordd3I19c3wfrjt6Fdwx/fLp86HI4E89wY7/nz5xMt7oqfT+90v5JPk+7ChQvWdc2UyN/fX23btlWdOnX07rvv3vT8Dv9q3bq1evXqpTFjxuiNN97QDz/8oO7duyepeOF2ueNG7dq10//+9z9NnTpVFSpU0Pz5829amN6jRw99/vnnev311/XVV18pXbp0cjgcbkU9LsWKFVPlypX1+++/a+zYsTcdmjg8PFxNmjRRkyZNJEkHDx5U586dNXXqVNWuXVutW7fWmTNnbnue3bJlS82YMUP9+vXTM888o/DwcB05cuSW915cee3GB5GkuHbrje0W8tqtXbt2LcW39dKlS6fBgwdrwoQJOnTokCQleGAX+C9c7ePdu3cn+GzGjBnWudWqVavUokULt8LQG3NUUnJ2Us+pb+TKnzf7/Y+fC+70uHRjHPHbzvny5VOFChUUFRWlV199VQ0bNrzt9QNjjC5cuHDb+VxFsMWKFdPatWv15ZdfasiQIerevbsyZMigTp06qW/fvgke/LqV210bOX36dKLXo10dENzoww8/dBui/N1339X8+fP1zTffuP0sXNvatGlT+fr6ui0j/nXQ06dPJ3oukdj6fX193bbHtY4ePXrovffec5v36tWrKliwoKSk7c927dopV65cGj58uN566y2dO3dO+fPnV58+fdS8efMk/4xddRocr3G/MKQ7koKCT+AWbrwo+umnn6pDhw6aPHmymjZtak3/9ttvFRoaqpkzZ7r1shQVFeX2/aefflp9+/bVgQMHNG/ePD3zzDOSpCpVqmjatGk6cuSIdu7caU1PTGhoqIwxCXp0cl14dRk/frzy5cunSZMmufVicON8N1qwYIEOHTqkSZMmqXnz5tb0xJ7w8mZhYWE6c+aMfHx8UuxTFcHBwfroo4/UqFGjFH0hOLnExMToypUrCU5owsPD1b9/f82ePVt///33TQua7lZiP7sLFy5YT9/dKF26dEqVKpWmTZuW6Of366KSMUaXLl1yO9l0xZ4uXTq3+eJLyu+mXdvk7VLqfjXGKFWqVBo4cKAaNWqkiRMn2h3SA4/8eGvkx5QlODjY7eeWksTGxip16tT64IMP1KhRI02dOtXukFIkHx8fVa9eXXPnzk2QG+KbM2eOYmNj9fTTT7s9ER5faGioLl++nGD67c4ZkyKp58jJISIi4pbFHq6L84nNExUVZX3uutlw4z67cX+lS5dO6dKls3oGvVGmTJmSGjruQkBAgK5evSo/P78Uu69jY2MVFhamDz/8UI0aNVKfPn3sDumBcC/zZ3xp06aVw+FQmzZt1L1793sac5o0aW6am1yfJxdXD0G3y6fGmASFqjfGm5Tjz/3cr94uLCzstoUVD6qQkBB9+OGHaty4sSQlKAhA4rJkyaJnnnlGEyZMUM6cOXXp0qV7fv7tUrp0aT366KOaMGGC9u3bp9DQUDVs2DDRecePH6/q1atr8ODB1rT4N77jmzZtmubPn6+6devqnXfeUe3atd16Rbx06ZL8/f0TFIvnypVLEydOVJo0aazrDrdrO164cEHTp09Xu3bt1Lt3b2v6yZMnb7ntrvPA6dOnK0+ePAk+T6l/l/dLYGCgMmTIYHcY98WN59ZffPGFJMnPzy/FbjPs4ePjoxo1auj333/XxYsX3Qrs4o9I9M8//9x2WUnJ2Uk9p76RK3+uXLky0ZGO7vd1Nlev+bt377bqBm7WRnc9uJ/U6wySVKBAAX3zzTeS4kaqGDt2rAYOHCh/f3/17dv3nm1HYGBgovUFN+uZOlOmTG51EsOGDVOhQoXUvn17t95eXft/6NChqlSpUoLluApwAwMDEz0HSMrIoq519OzZU82aNUvwefzC2KTsT1enE06nU6tWrdInn3yiFi1aKHv27NbIYbf7GQP3m+t6hMPhcGvXAvFR8AlJcTdzjxw5wk3d22jXrp2+++47vfbaa6pSpYp18yA6OlqhoaFuDaSlS5dq165dbj0ClCpVShEREfr555+1evVq60StSpUqeueddzRr1iylTZs2wVBR8RUuXFiStGLFClWpUsWavnDhQrf5oqOjlT59erenRX/44Qe34UXiM8bI4XBYT2zFP3GMiYnRhAkTrPnwbwM1S5YsSTrZgXe7fPmycubMqXLlymnWrFkJPr927ZpOnjypYsWK3fN1L1261K33i7179+rMmTNWLrlR+fLlNWbMGGXIkMHtpPPo0aMKCAhI8HTkvbRgwQLVrVvXer969WrlyZNHgYGBkuJuDt148XTp0qWJLit+rrJzm7xVQEAAuRFJQn5MGvJjylG3bl1NmTLF7jDwgHOdO3br1s26iB3fqVOn9N577+mJJ55QzZo1bzpsa+HChbVq1SrrXFCSjh8/rp07dyp37tz/KcakniMnh6JFi2r58uWKiYmxens6cOCAWrRooZ49e6pGjRpKkyaNFi5cqC5duljfu3btmlauXKknn3xSkvu5uKv3CCnhuXj58uX1008/SXJ/iPTUqVO6du3aLXvHw3/n+hkXKFBAW7ZssTkaeJp7lT/jS5UqlYoVK6bt27cneHB89+7d/2m42ccff1zLly9P0KPlokWLlD59ercek+739boiRYrIx8dHixYtchuZaMSIEZo6darmzp1rDfe+cOFCt96AFi1aJEnWMImFCxfW7Nmz3QoLrl696lYofz/3q7d7/fXX9cEHH9gdBjxMu3bt9Nxzz+mzzz5T1apV3Qp97se63n77bR0+fFhNmjRJMJKZS3R0dILitrFjx0pyz3lHjhxRx44d1b17d/Xp00fFixdX27Zt9csvv0iKa7s9+eSTGjRokLp165ZgPa7rVzly5JAU13YcOXKkTp06Za3/8uXLevrpp9W6dWs999xzMsYkKbb4ypcvb60v/pC0TqdTO3fuvGkPa0hcpUqV9Pvvv9sdRrJwFXxkzpxZPj4+NkeDlKZnz56aNWuWunTpotGjRyfau/PWrVtvu5yk5Ox8+fLJ399fK1ascBsq/MZz6huVL19en376qSIjI1WtWjVr+sWLFxUZGXlXBZ930nbetm2bfHx8lDVrVoWFhalw4cKJxrx48WIVK1ZMwcHBKlWqlHx9fRO0i0+cOKEdO3botddekyQtW7ZM169ft3qILlCggD755BP9+uuvCR4i/a/t/fz580uKK5x1rc8Yk+TrlBEREfr888/Vtm1bjRo1Sh06dJAU9zCHv7+/Dhw4oHbt2rl9Z8uWLdY1oPz58+uXX37RgQMHrGtOV65cSfSewI0KFCig9OnTuxXdumzfvt0aPeB2+9PpdGr27NkqWLCgChYsKF9fX5UrV05jx45VhgwZtHLlSlWqVClJP2PgfnMVzWfKlOmmvdcDtAyBO+BwODRq1ChdvnxZnTp1sqaXL19ex48f1/Dhw3XgwAF9//33evXVV1W3bl0dPXpUW7Zs0bVr1+RwOFSrVi19+eWXSpUqlUqVKiVJKl68uEJDQ/X555+rVq1aCbo8j69hw4ZKnTq13njjDa1YsUI7duxQ7969EzS4y5cvr7Vr12ratGk6cOCAhg0bphEjRuiJJ57Qrl27tGfPHjmdTqshPGPGDO3YsUOlS5dWQECAvvrqK+3atUurV69WzZo1reLSpUuXMhQOcIdCQkLUt29fzZkzR/Xr19f8+fN16NAh7dmzR7NmzVKNGjV09uzZ+9Izi4+Pj9q1a6fNmzdr3bp16tixo/z9/dWiRYtE5+/atat8fHzUsGFDLVu2TAcPHtTs2bP15JNPqmXLlvc8PhdfX1999NFHmjdvnnbv3q2PP/5Yy5Yt04svvmjN88QTT2j+/PmaM2eO9u3bp9GjRye4sOfqBWTFihXatGmTzp49a9s2Abg98uPtkR8B3KhMmTIaPny4Ro8erWeeeUZz587VwYMHtXPnTo0ZM0alS5dWYGCgfvzxx1sup23btjpw4IDeeust7dy5UytWrFDjxo2VOXPm/xxjUs+Rb+bkyZM6fvx4ov9u13vSjd59911FRUWpVatW2rVrlzZs2KAOHTpo//79KlOmjPz9/fXOO+9o5syZ6t+/v3bt2qV169bp+eef17lz5/TOO+9IintQM3fu3OrXr5/mz5+v3bt3a/DgwZo3b57b+tq0aaOcOXOqcePGmj9/vg4ePKgFCxaoVq1aeuqppxg9A7DRvcqfN+rbt6+WLVumLl26aOPGjdq7d69GjBihYsWKaciQIXcdb8+ePXX69Gm98MIL2rhxo3bs2KE+ffpo9uzZ6tmzp1X0kS5dOh0/flyLFy/W3r17re9HR0ffNJceP35cFy9eTHIsmTNnVseOHTVixAiNHz9eBw8e1MyZM9WzZ0/ly5dPAQEBeu655/Too4/qtdde05w5c7R//37NnDlTr7/+ukqWLKnatWtLijv+XLp0SZ06ddLWrVutnHvjMJT3a78CSKh27drKlCmTtmzZojZt2tzXdbVo0UIOh0M7d+685brKly+v3377TQsWLNDevXvVv39/rV27Vjly5NCmTZt08OBBGWPUpk0bZc2aVf369VNQUJDGjx+vuXPn6uuvv5YklS1bVg0aNFCPHj309ttva82aNTpy5Ii2bdumsWPH6plnnlGePHmswpU33nhDQUFBatq0qTZv3qzt27erffv2WrdunZ588kmlS5dOBQsW1OTJk7V69Wrt2LFDnTt3lo+Pj3x9fbV27dpEeyItVqyYnnvuOb3zzjuaNGmS9u3bp3Xr1qlly5YqU6aM9u/ff1/2Nx5sMTExOnHihCSl2JHmYK/HHntMY8aM0cSJE1WzZk2rDbdr1y7NnDlTDRs21GuvvabatWurRIkSN11OUnJ2aGioGjVqpClTpmjs2LHau3evZs6cqU8++eSWxUy1a9dWqVKl1L59e/388886cOCAli9frgYNGujJJ5+0huBOqnTp0mnXrl1as2aNDh8+bE2/cuWKW1t527Zt+uijjzR8+HB17NjR6gSqd+/e2rBhg1555RVt375dmzdvVqdOnbRp0yar5+fMmTOrQ4cOGjFihIYNG6a9e/daMYeEhFgPm/7yyy+qV6+exo8fr3379mn//v0aM2aMdu3aperVq1vxStK8efO0fv16xcbG3tH2ujRo0EBBQUF68803tWLFCm3btk0dOnRQTExMkpfRpk0b1ahRQ926ddOhQ4ckxQ3J/uqrr+qLL77QsGHDtGvXLm3ZskVdu3ZV8eLFtWLFCklSs2bN5HA41LFjR23YsEEbN27U888/f9PRtuLz9fVV79699cMPP2jAgAHatm2bdu7cqQ8//FCPPPKIpk+fLun2+9PX11eDBg1SgwYNNG/ePB06dEg7duzQBx98ID8/P6uH0qT8jIH7yel06vjx45IYzh23YQBjTLZs2Ywkky1bNo9eZnJp3bq18fX1vennn3zyiZFkJkyYYIwx5sqVK6ZDhw4mffr0JiwszDz11FNm9+7dZtmyZSZTpkwmLCzMbNq0yRhjzPfff28kmWeffdZtmfXq1XNb5q0sWbLElC5d2gQEBJgMGTKYV155xUyePNlIMkuWLDHGGHPq1CnTqFEjEx4ebtKkSWOaNGliIiMjzbRp00x4eLhJly6dOXXqlNm5c6cpWLCg8ff3t2KaPHmyyZcvnwkKCjKFChUyEydONNHR0aZSpUomICDA9OrV6672q134/f7vzp8/byQZSaZGjRp2h/PAmj9/vmncuLHJnTu3CQ4ONoGBgSZPnjymXbt2Zvv27cYYY/766y8jyUycONEYY8y4cePc/rZdJJm+ffu6TatUqZKpVKmS2zzt2rUzgwYNMrly5TIBAQGmcOHCZtasWdY8iS1/y5Ytpl69eiZt2rTG19fX5MiRw7z11lvm4sWLt/yea33xtW7d2uTKlcttmuu7+/fvt+bx9fU1q1evNmXLljVBQUEmQ4YMpmvXrub69evW9/bu3Wtq1KhhwsLCTHh4uGnatKlZu3atkWTGjRtnzffOO++YVKlSmdSpU1vxJWWbcuXKZapVq2Zw90qUKGEkmYCAALtDSTYTJkyw8uOwYcPsDueBRX50/y75MWU5ePCglSeaNGlidzjJpkGDBtZ2HzlyxO5wUqSNGzdauSQgIMCEhYWZ0qVLm0GDBplLly5Z890sXxpjzIABA0zWrFmNv7+/KVSokJkyZYqpX7++yZMnjzXPjTkgsZy2ZMkSt5yT1HPkG8+9+/bta/3e3OxfpkyZjDEJjwvxtyl+LjUm7jhTrlw5ExISYjJkyGDq1atndu3a5fa9oUOHmiJFilj7slq1agn22datW02VKlVMUFCQCQ8PNy+88IJZsGBBgjgOHTpkWrRoYTJmzGh8fX1NpkyZTMeOHU1kZKQ1T6VKldz2M+6N0NBQI8kUKVLE7lCSTe/eva2/j3nz5tkdzgPhv+bPdu3amRsvq8+aNcuULVvWBAcHm4CAAPPoo4+a4cOHu81zuzZVYnlh/vz5pkKFCiZVqlQmMDDQFCtWzIwePdptnqVLl5ocOXKYgIAA89prr1nrul0+7dGjhzHm5tdB8+TJ49aGvn79uunXr5956KGHTEBAgHn44YdNnz59zLVr16x5Tpw4Ydq2bWsyZcpk/Pz8TNasWc1LL71kTp8+7bbskSNHmocfftj4+/ubhx56yAwZMsS88cYbCeK43X7dv3+/kWQGDBhw0/2KuN8j18/9vffeszucZPPoo48aSSYkJMTuUDxO69at3f6+jTGme/fuJnXq1InmQWP+bacdPnzYWkZSckelSpVM69at3eZp0qSJyZs3r9u0vn37up0j79+/39SoUcOEhoaajBkzmk6dOpmLFy+aIUOGmFSpUplcuXKZzz//3Pj5+Zm///7bbVlvv/22CQoKMps3bzbGGON0Os3o0aNNlSpVrLZvqlSpTLFixcx7771nzpw54/b9devWmZo1a5rQ0FCTJk0aU7VqVbNmzRrr8/Xr15snnnjCBAcHm6xZs5p3333XXL9+3VpvxYoVjTEJ281Xrlwx7777rnnooYeMn5+fCQ8PN3Xq1DFr16512w/x9zP+de7cOSuX1axZ0+5wksU///xjbXO9evXsDgcp2Pbt202HDh3Mww8/bIKCgkyqVKlM3rx5TatWrcwff/xhzXez9nFScrYxcX/HLVu2NOHh4SY4ONhUqFDBbNiwwaRNm9bKl4m1786cOWNefvllkzVrVuPr62vSp09vXnjhBbN7925rnqQel6ZNm2YyZsxoAgMDzaBBg4wxJtG2crp06UzZsmXN2LFjjdPpdFvmlClTzGOPPWaCgoJMcHCwKVu2rJk5c6bbPNevXzfvv/++yZMnj/H39zdp0qQxzz77rHVsMsaYmJgY079/f1OgQAETHBxswsLCTLFixcxXX31lzXP16lVTo0YNExAQYCIiIsy1a9cSnDckdp5x+PDhBNfJ582bZ4oWLWoCAgJMzpw5zYcffmhGjRplJFnHuZtda3HZt2+fCQkJMdWqVTOxsbHGmLjj7KBBg0yBAgWsY2yVKlXM/Pnz3b47adIkky9fPhMQEGDy589vRo4caXr16mUkmZMnT97y52iMMWPHjjXFixc3gYGBJigoyJQpU8ZMmTLljvbnyZMnTbt27Uy2bNlMQECASZ8+valcubL59ddf3daVlJ9xYtfHgHvh2LFjVi6qXbu23eHAgzmMYXxmSNmzZ7eGdL9XQ7Dej2UCd4Pf7//uwoULSp06tSSpRo0aCXqxgWdyOBxq166dRo8ebXcot9SmTRtNmjTpjp4khGcqWbKk1q9fr4CAgFv22pWSTJw4Ua1atZIkDRs2TK+88orNESEpyI9ITocOHbKGFmrSpInXDOnesGFD6wn7I0eO8DQygGQRFhamixcvqkiRIl4zpHufPn00YMAASXG9vtSoUcPmiAB4mj///NPqJeq9997zmiHdixYtqs2bNyskJESXLl2yOxwA/9H58+cVHh4uSapZs6ZXDOm+du1alS5dWpL08ssva/jw4TZHBOBBFhUVJT8/P7ee9d955x198sknioqKsnLs/XLq1CmFhoYqKCjImta0aVP9/vvvjC4KxLN+/XqVLFlSktShQweNHDnS5ojgqRjSHQAAAAAAAAAAAAAAD3H06FHrNUO6A/gvzp07p4cffli1atXSqlWrdODAAU2ePFnDhw9Xs2bN7nux5969e5U1a1Y1bdpUGzZs0L59+/TNN9/op59+ohMN4AYc/5FUFHwCAAAAAAAAAAAAAOAh4hd8MGoGgP8iPDxcixYtUvr06VWnTh3ly5dPb7/9tlq3bq1vvvnmvq8/T548mj9/vi5cuKCqVauqQIEC+vTTT9WzZ0/169fvvq8feJAcO3bMes3xH7fiZ3cAAADg/jDG2B1CkowfP17jx4+3OwwAXoT8CAAAAAAAAE8Wv+CDHr4A/FePPvqoZs2aZdv6K1asqD///NO29QMPCh74QFLRwycAAAAAAAAAAAAAAB6Cgg8AALwPQ7ojqSj4BAAAAAAAAAAAAADAQ9DDJwAA3och3ZFUFHwCAAAAAAAAAAAAAOAhXD18+fr6KmPGjDZHAwAAkoPr+O9wOBQREWFzNPBkFHwCAAAAAAAAAAAAAOAhXAUfWbJkkY8Pt/QBAPAGrh4+M2XKJD8/P5ujgSejdQgAAAAAAAAAAAAAgAeIiYnRiRMnJDGcOwAA3sLpdOr48eOSGM4dt0fBJwAAAAAAAAAAAAAAHiAyMlLGGEkUfAAA4C1Onjwpp9MpiQc+cHsUfAIAAAAAAAAAAAAA4AFcw7lKFHwAAOAt4h//eeADt0PBJwAAAAAAAAAAAAAAHuDo0aPWawo+AADwDvGP/zzwgduh4BMAAAAAAAAAAAAAAA9AwScAAN6H4z/uBAWfAAAAAAAAAAAAAAB4AIZ0BwDA+zCkO+4EBZ8AAAAAAAAAAAAAAHgAevgCAMD7MKQ77gQFnwAAAAAAAAAAAAAAeAB6+AQAwPvQwyfuBAWfAAAAAAAAAAAAAAB4AFcPX76+vsqYMaPN0QAAgOTgOv47HA5FRETYHA08HQWfAAAAAAAAAAAAAAB4AFfBR5YsWeTjw+18AAC8gev4nylTJvn5+dkcDTwdLUQAAAAAAAAAAAAAAGwWExOjEydOSGI4dwAAvIXT6VRkZKQkhnNH0lDwCQAAAAAAAAAAAACAzSIjI2WMkUTBBwAA3uLkyZNyOp2SeOADSUPBJwAAAAAAAAAAAAAANjt27Jj1moIPAAC8Q/zjPw98ICko+AQAAAAAAAAAAAAAwGZHjx61XlPwAQCAd4h//OeBDyQFBZ8AAAAAAAAAAAAAANiMgk8AALwPx3/cKQo+AQAAAAAAAAAAAACwGUO6AwDgfRjSHXeKgk8AAAAAAAAAAAAAAGxGD18AAHgfhnTHnaLgEwBwR4wxdocAwEN5e37w9u0HkDhyA/sAQPLx9nzj7dsPIHHenhu8ffuBlMKb/pbp4RMAAO9DD5+4UxR8AgBuKzAw0Hp99epVGyMB4MmuXLkiyT1npHTkRwC3Ez83kB8B4P4xxlj5xlvzras9DgDxeXt79OrVq4qNjbU5GgD/lTflMlcPX76+vsqYMaPN0QAAgOTgOv77+PgoIiLC5mjwIKDgEwBwWwEBAUqVKpUk6cSJEzZHA8BTnTx5UpKUPn16myNJPunSpbNekx8BJCZ+bvCm/Bh/W8mPAJLD2bNn5XQ6JXlvvnW1xwEgPm9vjxpjdObMGZujAfBfeVMucxV8ZM6cWT4+3MoHAMAbuI7/ERER8vPzszkaPAhoJQIAkiRXrlySpAMHDigmJsbmaAB4mrNnz1o3UFz5whvE39a9e/faGAkATxU/N3hTfsyZM6f1mvwIIDl4a76lPQrgdsiP0p49e2yMBMC94C25LCYmxipuZThXAAC8g9PpVGRkpCSO/0g6Cj4BAElSpEgRSVJ0dLS2b99uczQAPM2GDRus16584Q0eeughBQUFSZLWr19vczQAPFH83OBN+TH+tpIfASSH+LmmcOHCNkaSvOJv67p162yMBICnIj/SHgVSAm/JZZGRkTLGSKLgAwAAb3Hy5Elr1JosWbLYHA0eFBR8AgCS5PHHH7deL1y40L5AAHik+Hkhfr5I6fz8/FSqVClJ0r59+3T48GGbIwLgaVz50eFwWPnCG5QpU8Z6TdsRQHLw1vZozpw5lTlzZknS8uXLFR0dbXNEADzJ9evXtWzZMklxQwPmzp3b3oCS0RNPPGG9XrRokY2RALgX4v8dp+S23rFjx6zXFHwAAOAd4h//eeADSUXBJwAgSapXr269njVrlo2RAPBEP//8s/W6atWqNkaS/MiPAG7mwIED2rRpkyTpscceU9q0aW2OKPlkyJBBxYsXlxTX4xwF8QDup+joaP3222+SpNSpU6t06dI2R5R8HA6H1R69ePGi/vrrL5sjAuBJFi5cqPPnz0uSqlWrJofDYXNEyeexxx5TeHi4JGnu3Lm6du2azREBuFunTp3S0qVLJUl58+ZN0UO6Hz161HpNwQcAAN6B4z/uBgWfAIAkKVq0qB5++GFJ0oIFC7hpD8CyadMmbdy4UVJcj27Zs2e3OaLkVb9+fev1t99+a2MkADzNhAkTrNcNGjSwMRJ7xN/miRMn2hgJgJRu9uzZioqKkiTVqVNH/v7+9gaUzOK3R+MfewAgfk6Inyu8gZ+fn5599llJ0rlz53hAE3iAff/999Ywpyk9l8Uv+KCHTwAAvAPHf9wNCj4BAEnicDjUqlUrSVJsbKyGDh1qc0QAPMXgwYOt161bt7YxEnsULVpUJUqUkCStWbNGK1assDkiAJ7g2rVr+uabbyRJPj4+atGihc0RJb8WLVpYvUgNHz6cYYYB3Dfe3h6tXbu20qdPL0maOnWqjhw5YnNEADzBsWPH9OOPP0qS0qZNq7p169ocUfKLf0wYPHiwjDE2RgPgbjidTrd7ESm9rceQrgAAeB+O/7gbFHwCAJKsY8eOCggIkCQNGzZMkZGRNkcEwG579uyxegwJDw9Xy5YtbY7IHp07d7Ze9+3bl5tIAPTNN99YF2qee+455ciRw+aIkt9DDz1kFRYcOXJEo0ePtjkiACnRn3/+qSVLlkiSChYsaA1v7k0CAwPVsWNHSdL169f14Ycf2hwRAE8wcOBA64Gbjh07KigoyOaIkl/VqlVVuHBhSdKyZcv0xx9/2BwRgDv13Xffaffu3ZLi/qaLFClic0T3F0O6AgDgfejhE3eDgk8AQJJlyZJFHTp0kCRdunRJ77zzjs0RAbCTMUZdu3ZVTEyMJKlr164KCwuzOSp7NG/eXLlz55Yk/fHHHwwVB3i5EydO6P3337fe9+rVy8Zo7BV/2/v06aNTp07ZGA2AlCY6Olpdu3a13vfq1Us+Pt55ubNr165KlSqVJGnkyJHauHGjzREBsNPmzZs1YsQISVJISIjeeOMNmyOyh8PhcGuPvvHGG/Q6DzxAzp07p3fffdd637t3bxujSR7xe/ii4AMAAO9AD5+4G955BRQAcNf69Omj8PBwSdL48eP1yy+/2BwRALtMmDDBygFZsmRRt27dbI7IPgEBAfrkk0+s9y+99JJOnjxpY0QA7GKMUadOnXT27FlJUsuWLVWiRAmbo7JP6dKl9cILL0iSTp8+rZdffplekAHcM/3799eWLVskSaVKlbLyjTeKiIiwCiKcTqfatGmja9eu2RwVADtcu3ZNrVu3ltPplCS98847ypQpk81R2ef5559X6dKlJUnbtm1Tv3797A0IQJJ17drV6vGqbt26qly5sr0BJQPX9vr6+ipjxow2RwMAAJKD6/jv4+OjiIgIm6PBg4KCTwDAHYmIiNCgQYOs961atdK+fftsjAiAHTZu3KhXXnnFej9s2DCv7d3TpXHjxnrmmWckScePH1ezZs2s3k8BeI8vvvhCM2fOlCSlT59en332mb0BeYAvvvhCadOmlST99NNPGjJkiM0RAUgJfv31Vw0cOFCS5Ofnp5EjR3pt754ub731ljXM6YYNG9S5c2eK7AEvY4xRly5dtH79eklSoUKF1L17d5ujspePj49GjhwpPz8/SdLHH3+sOXPm2BwVgNsZM2aMxo8fL0kKDQ3V119/bW9AycRV8JE5c2avb9sCAOAtXMf/iIgI67wFuB1aigCAO9ahQwfVq1dPknTmzBk99dRTioyMtDkqAMll//79ql27ti5fvixJevHFF1W/fn2bo7Kfw+HQ6NGjrafv5s+frw4dOig2NtbmyAAklylTpujtt9+23o8dO5YnchV3o2r06NHW+zfffFPTpk2zMSIAD7rVq1erSZMmVjHjgAEDvLo3ZZfAwEB99913CgoKkiSNGjXKKooF4B0+/vhj/e9//5P0b04IDAy0OSr7FS9eXB9++KGkuKLYpk2bauXKlTZHBeBmfv31V7300kvW++HDhytXrlw2RpQ8YmJidOLECUkM5woAgLdwOp1WnQXHf9wJCj4BAHfM4XDo22+/VaFChSRJu3fvVuXKlXXo0CGbIwNwv+3YsUOVKlXSkSNHJEllypTR0KFDbY7Kc2TJkkU//fSTAgICJEnjx4/Xiy++qOvXr9scGYD7beLEiWrevLlVfNSnTx89++yzNkflORo0aKCePXtKkmJjY9W0aVN9//33NkcF4EG0ePFi1ahRQ5cuXZIkNWrUyOt7r4uvWLFibkX2vXr1Ur9+/ejpE0jhjDHq37+/1d6S4oq+KYb/19tvv60mTZpIki5duqSaNWtq0aJFNkcF4EYzZsxQ/fr1rVFzOnfurJYtW9ocVfKIjIy02mwUfAAA4B1Onjwpp9MpKe4eI5BUFHwCAO5KeHi4fvvtN+XIkUNSXBFYmTJluFAKpGBz5sxR2bJldfjwYUlxQ8PNmTNHwcHBNkfmWSpUqKDvvvtOvr6+kqRvv/1WNWvW1PHjx22ODMD9EBMTo3fffVetWrWyLsy0b99e/fr1szcwDzRgwAC1bdtWUtx+a968uXr16mXdyAOAWzHGaOTIkapRo4bOnz8vSapSpYomTJjAcJc3aN68uT799FPr/fvvv6/mzZvr4sWLNkYF4H65ePGiWrZsqb59+1rTPv74Y68pkEoq1wPsVatWlSRduHBBNWrU0DfffENRPOABYmNjNXDgQDVs2FDR0dGSpCZNmujLL7+0ObLkc+zYMes1BR8AAHiH+Md/HvjAneBqKADgruXKlUuLFy9W3rx5JcU9gVq1alW9/fbb3EgCUpCzZ8/qpZdeUt26dRUVFSUpbji0v/76SxkzZrQ3OA/VqFEj/fjjj9bQeQsXLtSjjz6qH374gRtJQAqyadMmlS9fXh9//LE17dVXX9X//vc/ORwOGyPzTD4+Pho1apQ6depkTfvwww9VoUIFbd682cbIAHi6w4cPq379+urUqZNVAPDUU0/x8NEtvPXWW/riiy+s9z/88IOKFy+uP//808aoANxrf/31l0qUKKHvvvvOmvbZZ5+pR48eNkbluYKCgjR79mw988wzkqTr16/r5ZdfVr169ayHWwEkv507d6pKlSp67733rOtmLVu2dHug2hscPXrUek3BBwAA3oHjP+4WBZ8AgP8kd+7cWrlypapVqyYp7knczz77TPnz59fQoUN1+fJlmyMEcLfOnz+vQYMGKV++fPrf//5nTa9fv74WL16sTJky2Rid52vQoIH++usv64n8U6dOqVmzZnryySc1b948Cj+BB9iuXbv04osvqkSJElq9erUkyc/PT19++aW+/vprepq7BV9fX40YMUKfffaZdeNu5cqVKl68uNq3b689e/bYHCEAT3L8+HG98847KlCggH7++WdreufOnTVr1iyFhITYGJ3ne+ONNzRt2jSFhYVJkvbu3avq1avr2Wef1Zo1a2yODsB/sXbtWtWrV09Vq1a12k+hoaH66aef1K1bN5uj82whISH6+eef1aVLF2va7NmzVaBAAXXv3p3ROYBkdODAAb3yyit65JFHtHjxYklxvfH2799f3377rfz8/GyOMHnFL/igh08AALwDx3/cLe5CAQD+s/Tp0+v333/XRx99ZPVmd+zYMXXu3FnZsmXTyy+/rD/++ENXrlyxOVIAt3Pp0iX98ssvevHFF5UtWzb16NFDp0+fliSlSpVKw4YNc7tpjFsrW7asNm7cqAYNGljTli9frlq1aqlQoUL64IMPtHHjRsXGxtoYJYCkOHLkiMaMGaMaNWqoQIECGjdunPW3W7BgQS1dulRdu3alZ88kcDgc6tatm5YsWaL8+fNLintoaMyYMcqfP79q1qypsWPHul3sAuA9zpw5ox9//FGNGzdWzpw59cknn1jnkhEREZo+fbqGDBkif39/myN9MDRo0EDr1q1T+fLlrWmzZ89WmTJlVKZMGX311VfavXs3DyMBHs4Yoz179mjw4MF6/PHHVbp0ac2aNcv6vFy5clq3bp0aNmxoY5QPDj8/P3311VeaOXOm9TDrlStX9Omnnypnzpxq1KiRpkyZojNnztgcKZDyREZGasKECapdu7by5MmjESNGKCYmRlJc5xILFixQ7969vfLcmiFdAQDwPhz/cbcchqt5kJQ9e3YdOXJE2bJl0z///OOxywTuBr/fyWv37t3q0aOHZsyYkeAzf39/PfLII8qfP7+yZMmiVKlS0QMWYDOn06mLFy/q2LFj2rFjh7Zt2yan0+k2j8PhUPPmzTVw4EDlyJHDpkgffHPmzFH37t21ffv2BJ+lSZNGRYsWVZ48eZQhQwYFBgZ65YVtwFMYYxQTE6OoqCgdOnRIW7Zs0aFDhxLMFx4ernfeeUdvvPGG9dAL7szVq1f15Zdf6uOPP9b58+cTfJ4rVy4VKVJEOXPmVJo0aeTn50d+BFIQY4ycTqcuXLigf/75R9u2bdOuXbsSzBcQEKBXXnlFffr0Udq0aW2I9MEXGxurb7/9Vr1799aRI0cSfB4REaGiRYsqd+7cSpcunQICAsi3gI2MMYqOjtbZs2e1f/9+bd68WZGRkQnmy5o1q/r376+2bdtyje0uRUVFqX///ho2bJiio6MTfJ4/f34VLlxY2bJlU+rUqeXr60t+BJLIdW597tw5HT58WFu3btX+/fsTzJcqVSp169ZNPXr08Ooe3Dt06KDRo0dLktq2bavs2bPbHBEAALjf5s6da43CsmbNGpUqVcrmiPCgoOATkv4tXvPx8bln3QQfO3ZMsbGx93SZwN24H7+LrmVS8HlzGzZs0FdffaUff/yRnj2BB1RYWJiaN2+uLl26qGDBgnaHkyI4nU7NmDFDQ4cO1aJFi+wOB8BdypMnjzp16qSOHTsqPDzc7nBShKioKP3vf//T//73v0RvAALwThEREWrbtq01egT+u6tXr2rSpEkaPny41q9fb3c4AO5S8eLF9corr6hly5YKCgqyO5wU4ejRo/r66681bty4RItrAdx7OXLkUMeOHfXyyy8rffr0dodju2effVazZ8+2OwwAAGCTI0eO0MsnkoyCT0iSChUqpB07dtgdBvDAKViwYKI9teFfFy5c0G+//aZ58+Zp+fLl2rlzJ0MXAx7K19dXhQsXVvny5fXUU0+pZs2aCg4OtjusFOvgwYOaNWuW/vzzT61evdpt2AYAniU0NFQlS5ZUpUqVVKdOHZUuXZpefe4TY4xWrVqlX375RYsWLdL69et18eJFu8MCkEwCAwNVtGhRPfnkk3rmmWdUuXJl+fn52R1WirVt2zbNnj1bf/31l9asWcPQxYAHS5cunUqVKqUqVaqobt26KlKkiN0hpVgxMTFatGiRfv31Vy1ZskSbNm3StWvX7A4LSBFCQkJUvHhxVaxYUbVr11a5cuXonTie999/X/369bM7DAAAYIPHHntMa9as4b4DkoyCT0iSfvrpJ/Xu3VsXLly4Z8u8cuWKLly4oLCwMIpFYKv79bsYFhamAQMGqFGjRvdsmd7g2rVrOnTokE6ePKnLly+LwxBgL4fDoVSpUikiIkI5cuRQQECA3SF5raioKB0+fFhnzpxJdBg5AMnL19dX4eHhypo1qzJnzsyFFpsYY3Ts2DEdPXpU58+fl9PptDskAPeYj4+PQkNDlTlzZmXPnl2+vr52h+SVjDE6ffq0/vnnH0VFRen69et2hwR4PX9/f6VJk0bZsmVThgwZaI/axOl06siRIzp+/LguXLjAg+zAHfL19VVYWJiyZMmirFmzUuB5C7Gxsfr7778VFRVldygAACAZ+fv7q2zZsgoMDLQ7FDxAKPgEAAAAAAAAAAAAAAAAAADwcDxGBQAAAAAAAAAAAAAAAAAA4OEo+AQAAAAAAAAAAAAAAAAAAPBwFHwCAAAAAAAAAAAAAAAAAAB4OAo+AQAAAAAAAAAAAAAAAAAAPBwFnwAAAAAAAAAAAAAAAAAAAB6Ogk8AAAAAAAAAAAAAAAAAAAAPR8EnAAAAAAAAAAAAAAAAAACAh6PgEwAAAAAAAAAAAAAAAAAAwMNR8AkAAAAAAAAAAAAAAAAAAODhKPgEAAAAAAAAAAAAAAAAAADwcBR8AgAAAAAAAAAAAAAAAAAAeDgKPgEAAAAAAAAAAAAAAAAAADzc/wFedybQayWUsQAAAABJRU5ErkJggg==\n",
"text/plain": ""
},
"metadata": {},
"output_type": "display_data"
}
]
}
},
"e5ab7e504f6b4feb818b8ab620ebf0eb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"eabb37aa2c9e496d8dea0223004e8433": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_3b412bab52774f4b8042a40b6d82c26b",
"IPY_MODEL_e3c4e503194b487ab89eebf9c7285213",
"IPY_MODEL_d0065db588724c628b0da4ab4b33b280"
],
"layout": "IPY_MODEL_490504390d334af6bb42fbafd0c73473"
}
},
"ed13942317be4ebfbf35d46c96810abc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_c15cb55c09df4dcf878d639fb1fea451",
"IPY_MODEL_772851bb8fcd411c93091e182b352adb",
"IPY_MODEL_cc9b43c550e74f02b14183ebe37b8030"
],
"layout": "IPY_MODEL_b22442b4e846481abbbb3718759eb1d0"
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}