import os from typing import List import numpy as np import pooch from PIL import Image from PIL.Image import Image as PILImage from .base import BaseSession class SiluetaSession(BaseSession): """This is a class representing a SiluetaSession object.""" def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: """ Predict the mask of the input image. This method takes an image as input, preprocesses it, and performs a prediction to generate a mask. The generated mask is then post-processed and returned as a list of PILImage objects. Parameters: img (PILImage): The input image to be processed. *args: Variable length argument list. **kwargs: Arbitrary keyword arguments. Returns: List[PILImage]: A list of post-processed masks. """ ort_outs = self.inner_session.run( None, self.normalize( img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320) ), ) pred = ort_outs[0][:, 0, :, :] ma = np.max(pred) mi = np.min(pred) pred = (pred - mi) / (ma - mi) pred = np.squeeze(pred) mask = Image.fromarray((pred * 255).astype("uint8"), mode="L") mask = mask.resize(img.size, Image.Resampling.LANCZOS) return [mask] @classmethod def download_models(cls, *args, **kwargs): """ Download the pre-trained model file. This method downloads the pre-trained model file from a specified URL. The file is saved to the U2NET home directory. Parameters: *args: Variable length argument list. **kwargs: Arbitrary keyword arguments. Returns: str: The path to the downloaded model file. """ fname = f"{cls.name()}.onnx" pooch.retrieve( "https://github.com/danielgatis/rembg/releases/download/v0.0.0/silueta.onnx", ( None if cls.checksum_disabled(*args, **kwargs) else "md5:55e59e0d8062d2f5d013f4725ee84782" ), fname=fname, path=cls.u2net_home(*args, **kwargs), progressbar=True, ) return os.path.join(cls.u2net_home(*args, **kwargs), fname) @classmethod def name(cls, *args, **kwargs): """ Return the name of the model. This method returns the name of the Silueta model. Parameters: *args: Variable length argument list. **kwargs: Arbitrary keyword arguments. Returns: str: The name of the model. """ return "silueta"