import math import torch import torch.nn as nn #-------------------------------------------------# # 卷积块 # Conv2d + BatchNorm2d + LeakyReLU #-------------------------------------------------# class BasicConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1): super(BasicConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, kernel_size//2, bias=False) self.bn = nn.BatchNorm2d(out_channels) self.activation = nn.LeakyReLU(0.1) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.activation(x) return x ''' input | BasicConv ----------------------- | | route_group route | | BasicConv | | | ------------------- | | | | route_1 BasicConv | | | | -----------------cat | | | ---- BasicConv | | | | feat cat--------------------- | MaxPooling2D ''' #---------------------------------------------------# # CSPdarknet53-tiny的结构块 # 存在一个大残差边 # 这个大残差边绕过了很多的残差结构 #---------------------------------------------------# class Resblock_body(nn.Module): def __init__(self, in_channels, out_channels): super(Resblock_body, self).__init__() self.out_channels = out_channels self.conv1 = BasicConv(in_channels, out_channels, 3) self.conv2 = BasicConv(out_channels//2, out_channels//2, 3) self.conv3 = BasicConv(out_channels//2, out_channels//2, 3) self.conv4 = BasicConv(out_channels, out_channels, 1) self.maxpool = nn.MaxPool2d([2,2],[2,2]) def forward(self, x): # 利用一个3x3卷积进行特征整合 x = self.conv1(x) # 引出一个大的残差边route route = x c = self.out_channels # 对特征层的通道进行分割,取第二部分作为主干部分。 x = torch.split(x, c//2, dim = 1)[1] # 对主干部分进行3x3卷积 x = self.conv2(x) # 引出一个小的残差边route_1 route1 = x # 对第主干部分进行3x3卷积 x = self.conv3(x) # 主干部分与残差部分进行相接 x = torch.cat([x,route1], dim = 1) # 对相接后的结果进行1x1卷积 x = self.conv4(x) feat = x x = torch.cat([route, x], dim = 1) # 利用最大池化进行高和宽的压缩 x = self.maxpool(x) return x,feat class CSPDarkNet(nn.Module): def __init__(self): super(CSPDarkNet, self).__init__() # 首先利用两次步长为2x2的3x3卷积进行高和宽的压缩 # 416,416,3 -> 208,208,32 -> 104,104,64 self.conv1 = BasicConv(3, 32, kernel_size=3, stride=2) self.conv2 = BasicConv(32, 64, kernel_size=3, stride=2) # 104,104,64 -> 52,52,128 self.resblock_body1 = Resblock_body(64, 64) # 52,52,128 -> 26,26,256 self.resblock_body2 = Resblock_body(128, 128) # 26,26,256 -> 13,13,512 self.resblock_body3 = Resblock_body(256, 256) # 13,13,512 -> 13,13,512 self.conv3 = BasicConv(512, 512, kernel_size=3) self.num_features = 1 # 进行权值初始化 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, x): # 416,416,3 -> 208,208,32 -> 104,104,64 x = self.conv1(x) x = self.conv2(x) # 104,104,64 -> 52,52,128 x, _ = self.resblock_body1(x) # 52,52,128 -> 26,26,256 x, _ = self.resblock_body2(x) # 26,26,256 -> x为13,13,512 # -> feat1为26,26,256 x, feat1 = self.resblock_body3(x) # 13,13,512 -> 13,13,512 x = self.conv3(x) feat2 = x return feat1,feat2 def darknet53_tiny(pretrained, **kwargs): model = CSPDarkNet() if pretrained: model.load_state_dict(torch.load("model_data/CSPdarknet53_tiny_backbone_weights.pth")) return model