import os import json import random import time import streamlit as st import re import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoTokenizer MODEL_FILE = r'bt_8_LAYERs_100_DATA_PCT_768_EMBD_DIM_epoch_10.pt' ##place model file in same directory as app.py torch.set_default_device(torch.device("cuda")) # Better Transformer Class ––––––––––––––––––––––––––––––––––––––––––––––– class MLP(nn.Module): def __init__(self, n_embd, dropout=0.1): super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.GELU(), # replaced ReLU nn.Dropout(p=dropout), nn.Linear(4 * n_embd, n_embd), ) def forward(self, x): return self.net(x) class MultiHeadAttention(nn.Module): def __init__(self, n_embd, n_head, seq_length, dropout=0.1): super().__init__() self.n_embd = n_embd self.n_head = n_head self.head_dim = n_embd // n_head # Dimension of each head's key, query, and value assert self.head_dim * n_head == self.n_embd, "n_embd must be divisible by n_head" self.seq_length = seq_length self.drop = nn.Dropout(p=dropout) self.query = nn.Linear(n_embd, n_embd, bias=False) self.key = nn.Linear(n_embd, n_embd, bias=False) self.value = nn.Linear(n_embd, n_embd, bias=False) self.out = nn.Linear(n_embd, n_embd, bias=False) # multi-head combining weight matrix def split_heads(self, x): B, S, D = x.size() # split dimension into n_head * head_dim, then transpose the sequence length w/ n_head # output: [B, n_head, S, head_dim] return x.view(B, S, self.n_head, self.head_dim).transpose(1, 2) def combine_heads(self, x): # use permute or transpose to reverse # taking a view earlier may produce a non-contiguous tensor, so we convert back because view needs a contiguous input B, _, S, head_dim = x.size() # _ is n_head which we will merge # output: [B, S, n_embd] return x.transpose(1, 2).contiguous().view(B, S, self.n_embd) def scaled_dot_product(self, q, k, v, dropout, mask=None): # q,k,v are [B, n_head, S, head_dim] # the key transpose sets up batch multiplication s.t. wei = [B, n_head, S, S] wei = q @ k.transpose(-2,-1) / np.sqrt(self.head_dim) # mask is [B, 1, S, S], so simply broadcasted across each head and works as expected if mask is not None: wei = wei.masked_fill(mask, float('-inf')) wei = dropout(F.softmax(wei, dim=-1)) out = wei @ v return out def forward(self, x, mask=None): # x: (B, S, n_embd) # Step 1 and 2: Project full query, key, value, then split via reshaping q = self.split_heads(self.query(x)) k = self.split_heads(self.key(x)) v = self.split_heads(self.value(x)) # Step 3: Compute scaled dot-product attention with causal mask # not done. should use generate_mask attn = self.scaled_dot_product(q, k, v, self.drop, mask) # Step 4 and 5: Concatenate attention scores, return projected output matrix out = self.out(self.combine_heads(attn)) # (B, S, n_embd) return out class Block(nn.Module): def __init__(self, n_embd, n_head, seq_length, dropout=0.1): super().__init__() self.sa = MultiHeadAttention(n_embd, n_head, seq_length, dropout) self.mlp = MLP(n_embd, dropout) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) # experimentally, apply layer norm before attention/MLP self.drop = nn.Dropout(p=dropout) def forward(self, x, mask): # residual connection (stream) x = x + self.drop(self.sa(self.ln1(x), mask)) x = x + self.drop(self.mlp(self.ln2(x))) return x class PositionalEncoding(nn.Module): """ Formula taken from the original Transformer paper: PE(pos, 2i (even)) = sin(pos/(10000^{2i/d_model})) PE(pos, 2i+1 (odd)) = cos(pos/(10000^{2i/d_model})) See reference for more details: https://kikaben.com/transformers-positional-encoding/ """ def __init__(self, d_model, max_len): # just set d_model = n_embd and max_len = seq_len super().__init__() position = torch.arange(max_len).unsqueeze(1) # [max_len, 1] divisor = torch.exp(torch.arange(0, d_model, 2) * (-np.log(10000.0) / d_model)) # [d_model / 2, half for each of sin and cos] pe = torch.zeros(max_len, d_model) pe[:, 0::2] = torch.sin(position * divisor) # 0 for second dim or :? pe[:, 1::2] = torch.cos(position * divisor) self.register_buffer('pe', pe) # result: self.pe = [max_len, d_model], mapping each token index to a vector of length d_model as desired def forward(self, x): # x = torch.arange(seq_length) has shape [seq_length], so x.size(0) extracts it, then we index self.pe for the first seq_length mappings # note we do not add the positional embeddings to x itself yet, we simply return them # output = (seq_length, d_model=n_embd) return self.pe[:x.size(0)] class BetterTransformer(nn.Module): def __init__(self, vocab_size, seq_length, n_embd, n_head, n_layer, pad_idx, eos_token_id, device, dropout=0.1): super().__init__() self.token_embedding = nn.Embedding(vocab_size, n_embd, padding_idx=pad_idx) # we need to make sure the embedding ignores the padding token right? self.position_embedding = PositionalEncoding(n_embd, seq_length) self.blocks = nn.Sequential(*[Block(n_embd, n_head, seq_length, dropout) for _ in range(n_layer)]) self.lm_head = nn.Linear(n_embd, vocab_size) self.drop = nn.Dropout(dropout) self.seq_length = seq_length self.pad_idx = pad_idx self.eos_token_id = eos_token_id self.device = device self.init_params() # optional weight initialization (e.g. Xavier uniform) def init_params(self, default_initialization=False): if not default_initialization: for name, p in self.named_parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def get_causal_mask(self, x): """ Generates causal mask for decoding """ seq_len = x.size(-1) # x = (batch_size x seq_len) attn_shape = (1, seq_len, seq_len) subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') # k = 1 shifts the diagonal, so that the main diagonal gets 0's return (torch.from_numpy(subsequent_mask) == 0).to(self.device) # (1, seq_len x seq_len) # True along main diagonal + below, False elsewhere def get_pad_mask(self, x, pad_idx): """ Generates padding mask """ return (x != pad_idx).unsqueeze(1).unsqueeze(-2).to(self.device) # (batch_size x 1 x 1 x seq_len) def forward(self, x, targets=None): # should alr be int64 tokens but explicit cast in case x = x.to(torch.int64) B, S = x.shape # get mask mask = self.get_pad_mask(x, self.pad_idx) & self.get_causal_mask(x).to(self.device) # mask = (batch_size x 1 x seq_len x seq_len) tok_emb = self.token_embedding(x) pos_emb = self.position_embedding(torch.arange(S)) x = self.drop(tok_emb + pos_emb) # (B, S, n_embd) for block in self.blocks: x = block(x, ~mask) # (batch_size, seq_length, n_embd) # negate mask to fill originally False values with -inf later logits = self.lm_head(x) # (batch_size, seq_length, vocab_size) # this code assumes teacher forcing——for each text of seq length S we have S autoregressive predictions, # thus we have B*S logits and B*S targets if targets is None: loss = None else: B, S, C = logits.shape logits = logits.view(B*S, C) targets = targets.view(B*S) loss = F.cross_entropy(logits, targets, ignore_index=self.pad_idx) # we need to make sure loss ignores the padding token right? # this helps it avoid wasting compute on learning PAD -> PAD, etc. return logits, loss def generate(self, input_ids, method='multinomial', max_new_tokens=1000, temp=None, num_beams=None, p_nucleus=None, k=None): # TODO: see Huggingface's .generate() function # https://huggingface.co/transformers/v3.4.0/_modules/transformers/generation_utils.html if method == 'temperature': assert (temp is not None) and (0 < temp) and (temp <= 1) # if method == 'num_beams': # assert isinstance(num_beams, int) and (num_beams) > 0 and (num_beams) < 100 if method == 'top-k': assert isinstance(k, int) and (k > 0) # input_ids begins as (batch_size, seq_length) for _ in range(max_new_tokens): if method in ['multinomial', 'temperature', 'greedy', 'nucleus', 'top-k']: # i) Truncate to the most recent `max length` tokens text_cond = input_ids[:, -self.seq_length:] # ii) Retrieve predictions logits, loss = self(text_cond) # no loss because no targets ofc # model output: (batch_size, seq_length, vocab_size) # iii) Find last token logits of each logits = logits[:, -1, :] # (batch_size, vocab_size) # aside: if temperature sampling, divide logits by temp before applying softmax if method == 'temperature': logits = logits / temp # iv) Take softmax along each probs = F.softmax(logits, dim=-1) # v) Sample next token depending on method if method == 'greedy': next_idx = probs.argmax(dim=-1).unsqueeze(-1) elif method in ['multinomial', 'temperature', 'nucleus', 'top-k']: if method == 'nucleus': assert p_nucleus is not None and (0 < p_nucleus) and (p_nucleus <= 1) sorted_probs, sorted_idx = probs.sort(dim=-1, descending=True) prob_cumsum = sorted_probs.cumsum(dim=-1) idx_remove = prob_cumsum > p_nucleus # shift one right to ensure the first token is above the threshold idx_remove[..., 1:] = idx_remove[..., :-1].clone() idx_remove[..., 0] = False # retrieve original indices by reverse-sorting remove_mask = idx_remove.gather(dim=-1, index=sorted_idx.argsort(dim=-1)) # ^ specifically, we do this by first argsorting the indices which were returned from argsort. this is crazy y'all # you can show that this returns indices that when used to subset a sorted array, returns the original array in unsorted order # https://stackoverflow.com/questions/52127723/pytorch-better-way-to-get-back-original-tensor-order-after-torch-sort # torch.gather is how we apply a multi-dimensional index # https://stackoverflow.com/questions/50999977/what-does-the-gather-function-do-in-pytorch-in-layman-terms probs[remove_mask] = 0 if method == 'top-k': remove_mask = probs < torch.topk(probs, k).values[..., -1, None] # the topk returns (B, 1), leaving only the # kth largest probs (i.e. the cutoff value for each). Then mask is same size as probs (B, vocab_size) probs[remove_mask] = 0 # Sample probabilistically via scores next_idx = torch.multinomial(probs, num_samples=1) # (batch_size, 1) # vi) Autoregressively append to input_text input_ids = torch.cat((input_ids, next_idx), dim=-1) # end prematurely if generated if next_idx == self.eos_token_id: break # now input_text = (batch_size, seq_length + 1) return input_ids # END OF Better Transformer Class ––––––––––––––––––––––––––––––––––––––––––––––– def set_seed(seed = 42): random.seed(seed) np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # torch.cuda.manual_seed_all(seed) # if multi-GPU torch.backends.cudnn.deterministic=True # only applies to CUDA convolution operations torch.backends.cudnn.benchmark = False # usually CuDNN has heuristics as to which algorithm to pick. cudnn.benchmark benchmarks several algorithms and picks the fastest # often helpful if your input shapes are fixed and not changing a lot during training # however, this means it may pick a different algorithm even when the deterministic flag is set. # As such it is good practice to turn off cudnn.benchmark when turning on cudnn.deterministic def load_tokenizer(device): tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) EMPTY_TOKENS = torch.full((1,1), tokenizer.bos_token_id, dtype=torch.long).to(device) return tokenizer, EMPTY_TOKENS def load_big_model(tokenizer, device): ## Model architecture set_seed(42) N_HEAD = 16 N_LAYER = 8 N_EMBD = 768 VOCAB_SIZE = 50258 SEQ_LENGTH = 384 model = BetterTransformer(VOCAB_SIZE, SEQ_LENGTH, N_EMBD, N_HEAD, N_LAYER, tokenizer.pad_token_id, tokenizer.eos_token_id, device=device) model.init_params() path = MODEL_FILE model.load_state_dict(torch.load(path, map_location=device)["model_state_dict"]) return model def generate(model, tokenizer, device, method=None, k=None, p_nucleus=None, temp=None, max_new_tokens=None, cond="", deterministic=None): """ Wrapper for generating text using the specified model. Generates unconditionally if cond=None. Inputs: -model: Decoder model to be used for text generation -tokenizer: Compatible tokenizer -device: Device of model (CPU/CUDA) -method (str): Decoding method for text generation ('multinomial', 'temperature', 'greedy', 'nucleus', or 'top-k') -k (int): Positive integer for top-k logits to sample if top-k decoding -p_nucleus (float/int): Cumulative probability cutoff if nucleus/top-p decoding -temp (float/int): Temperature if temperature decoding -max_new_tokens (int): Maximum number of tokens to generate -cond (str=None): If provided, will serve as conditional prompt for text generation -deterministic (int): If deterministic, uses the specified seed for model generation Returns: -res (str): Generated text string """ assert method in ['multinomial', 'temperature', 'greedy', 'nucleus', 'top-k'], \ "method must be 'multinomial', 'temperature', 'greedy', 'nucleus', or 'top-k'" #if method == 'temperature': # assert (temp is not None) and isinstance(temp, (int, float)) and (0 < temp) and (temp <= 1), \ # "temp must be defined as a number between (0, 1]" #if method == 'nucleus': # assert (p_nucleus is not None) and isinstance(p_nucleus, (int, float)) and (0 < p_nucleus) and (p_nucleus <= 1), \ # "p_nucleus must be defined as a number between (0, 1]" ## if method == 'num_beams': ## assert isinstance(num_beams, int) and (num_beams) > 0 and (num_beams) < 100 #if method == 'top-k': # assert (k is not None) and isinstance(k, int) and (k > 0) and (k < SEQ_LENGTH), \ # "k must be defined as an integer greater than 0 and less than the model sequence length" #if max_new_tokens is None: # print('No max_new_tokens provided, using a default value of 250\n') # max_new_tokens = 250 #assert (max_new_tokens is not None) and isinstance(max_new_tokens, int) and (max_new_tokens) > 0 and (max_new_tokens) <= 1000, \ #"max_new_tokens must be an integer between (0, 1000]" if deterministic is not None: set_seed(deterministic) st.markdown(f"Deterministic: {deterministic}") if cond != "": cond_tokens = tokenizer(cond).input_ids gen_tokens = model.generate(torch.tensor(cond_tokens).unsqueeze(0).long().to(device), method=method, k=k, p_nucleus=p_nucleus, temp=temp, max_new_tokens=max_new_tokens)[0] # Insert delimiter to indicate where prompt ends gen_prep = torch.zeros(len(gen_tokens)+2).long() # make space for two more tokens for delimiter gen_prep -= 1 gen_prep[:len(cond_tokens)] = gen_tokens[:len(cond_tokens)] gen_prep[-(len(gen_tokens)-len(cond_tokens)):] = gen_tokens[-(len(gen_tokens)-len(cond_tokens)):] gen_prep[gen_prep == -1] = torch.tensor(tokenizer.encode(' || ')) # insert tokens for || in between res = tokenizer.decode(gen_prep) res = re.sub(re.escape(tokenizer.bos_token), '', res, count=1) ## Remove end token else: empty_tokens = torch.full((1,1), tokenizer.bos_token_id, dtype=torch.long).to(device) res = tokenizer.batch_decode(model.generate(empty_tokens, method=method, k=k, p_nucleus=p_nucleus, temp=temp, max_new_tokens=max_new_tokens))[0] res = re.sub(re.escape(tokenizer.bos_token), '', res, count=2) ## Remove start and end tokens # Clean up Unicode character issues # '“' then 'â€' = opening and closing double quotes # '’' = apostrophe res = re.sub(r'“', '"', res) res = re.sub(r'’', "'", res) res = re.sub(r'â€', '"', res) res = res + " [END]" ## better end token return res