import datasets from transformers import AutoFeatureExtractor, AutoModelForImageClassification import gradio as gr dataset = datasets.load_dataset("beans") extractor = AutoFeatureExtractor.from_pretrained("Kavindu99/leaf-classifier") model = AutoModelForImageClassification.from_pretrained("Kavindu99/leaf-classifier") labels = dataset['train'].features['labels'].names def classify(im): features = feature_extractor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences interface = gr.Interface(classify, inputs='image', outputs='label', examples=['sample-img.png'],title="Leaf Classifier") interface.launch(debug=True)