import streamlit as st import pandas as pd import plotly.express as px import pydeck as pdk # Set page layout and title st.set_page_config(page_title="AI-Powered Air Quality Dashboard", layout="wide") # CSS for custom styling st.markdown(""" """, unsafe_allow_html=True) # Sidebar for user interaction st.sidebar.header("Air Quality Monitoring") station_list = ["Louisville", "Lexington", "Richmond", "Elizabethtown"] selected_station = st.sidebar.selectbox("Select AQI Station", station_list) # Mock air quality data (can be replaced with real data) aqi_data = { "Louisville": {"AQI": 50, "Pollutant": "Carbon Monoxide", "CO_ppb": 572.21}, "Lexington": {"AQI": 150, "Pollutant": "Ozone", "O3_ppb": 70.00}, "Richmond": {"AQI": 400, "Pollutant": "PM2.5", "PM25_ug/m3": 180.00}, "Elizabethtown": {"AQI": 85, "Pollutant": "Sulfur Dioxide", "SO2_ppb": 15.00}, } # Header st.markdown("
AI-Powered Air Quality Dashboard
", unsafe_allow_html=True) # Get selected station's data station_data = aqi_data[selected_station] # --- Cards Section --- col1, col2, col3 = st.columns(3) # Card 1: AQI Summary with col1: st.markdown("
", unsafe_allow_html=True) st.metric(label="Air Quality Index (AQI)", value=station_data["AQI"]) st.write(f"**Top Pollutant:** {station_data['Pollutant']}") st.write(f"**Concentration:** {station_data.get('CO_ppb', station_data.get('PM25_ug/m3', 'N/A'))} ppb/µg/m³") st.markdown("
", unsafe_allow_html=True) # Card 2: AI Recommendation with col2: st.markdown("
", unsafe_allow_html=True) st.write("
AI Recommendation
", unsafe_allow_html=True) # Generate recommendation based on AQI severity if station_data["AQI"] <= 50: recommendation = "The air quality is good. It's a great day to enjoy outdoor activities." elif station_data["AQI"] <= 100: recommendation = "The air quality is moderate. Sensitive groups may need to limit prolonged outdoor activities." elif station_data["AQI"] <= 150: recommendation = "Unhealthy for sensitive groups. Reduce outdoor exertion if you have heart or lung conditions." else: recommendation = "The air is hazardous. It's strongly recommended to stay indoors and use air purifiers." st.markdown(f"
{recommendation}
", unsafe_allow_html=True) st.markdown("
", unsafe_allow_html=True) # Card 3: Health Impact Insights with col3: st.markdown("
", unsafe_allow_html=True) st.write("
Health Impact
", unsafe_allow_html=True) st.write(""" - **General Population:** No immediate danger at low AQI levels. - **Sensitive Groups:** Individuals with heart or lung conditions may experience symptoms at higher AQI. """) st.markdown("
", unsafe_allow_html=True) # --- Trends Visualization --- st.subheader("AQI Trends Over Time") trend_data = pd.DataFrame({ "Date": ["2023-01-01", "2023-01-02", "2023-01-03", "2023-01-04"], "AQI": [station_data["AQI"] - 20, station_data["AQI"], station_data["AQI"] + 30, station_data["AQI"] - 10] }) trend_chart = px.line(trend_data, x="Date", y="AQI", title=f"AQI Trend for {selected_station}") trend_chart.update_traces(line=dict(color="#007bff")) trend_chart.update_layout(plot_bgcolor="rgba(0,0,0,0)", paper_bgcolor="rgba(0,0,0,0)") st.plotly_chart(trend_chart, use_container_width=True) # --- Map Section --- st.subheader("Air Quality Stations Map") map_data = pd.DataFrame( [ {"lat": 38.2527, "lon": -85.7585, "AQI": 50}, # Louisville {"lat": 38.0406, "lon": -84.5037, "AQI": 150}, # Lexington {"lat": 37.7479, "lon": -84.2947, "AQI": 400}, # Richmond {"lat": 37.6939, "lon": -85.8591, "AQI": 85}, # Elizabethtown ] ) # Render the map with AQI points aqi_map = pdk.Deck( map_style="mapbox://styles/mapbox/light-v9", initial_view_state=pdk.ViewState( latitude=38.0, longitude=-85.5, zoom=7, pitch=50, ), layers=[ pdk.Layer( "ScatterplotLayer", data=map_data, get_position="[lon, lat]", get_radius=5000, get_fill_color="[255-AQI, 100, AQI/2, 150]", pickable=True, ) ], ) st.pydeck_chart(aqi_map) # --- Footer --- st.write("---") st.write("Learn more about air quality and its impact [here](https://www.epa.gov/air-quality-index).")