from dataclasses import dataclass from typing import Dict, Iterable, Optional import numpy as np import torch import torch.nn.functional as F from torch import Tensor, nn from .decoding import decode as decode_function from .decoding import detect_language as detect_language_function @dataclass class ModelDimensions: n_mels: int n_audio_ctx: int n_audio_state: int n_audio_head: int n_audio_layer: int n_vocab: int n_text_ctx: int n_text_state: int n_text_head: int n_text_layer: int class LayerNorm(nn.LayerNorm): def forward(self, x: Tensor) -> Tensor: return super().forward(x.float()).type(x.dtype) class Linear(nn.Linear): def forward(self, x: Tensor) -> Tensor: return F.linear( x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype) ) class Conv1d(nn.Conv1d): def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: return super()._conv_forward( x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype) ) def sinusoids(length, channels, max_timescale=10000): """Returns sinusoids for positional embedding""" assert channels % 2 == 0 log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) class MultiHeadAttention(nn.Module): def __init__(self, n_state: int, n_head: int): super().__init__() self.n_head = n_head self.query = Linear(n_state, n_state) self.key = Linear(n_state, n_state, bias=False) self.value = Linear(n_state, n_state) self.out = Linear(n_state, n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, ): q = self.query(x) if kv_cache is None or xa is None or self.key not in kv_cache: # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; # otherwise, perform key/value projections for self- or cross-attention as usual. k = self.key(x if xa is None else xa) v = self.value(x if xa is None else xa) else: # for cross-attention, calculate keys and values once and reuse in subsequent calls. k = kv_cache[self.key] v = kv_cache[self.value] wv, qk = self.qkv_attention(q, k, v, mask) return self.out(wv), qk def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None): n_batch, n_ctx, n_state = q.shape scale = (n_state // self.n_head) ** -0.25 q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) qk = q @ k if mask is not None: qk = qk + mask[:n_ctx, :n_ctx] qk = qk.float() w = F.softmax(qk, dim=-1).to(q.dtype) return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() class ResidualAttentionBlock(nn.Module): def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): super().__init__() self.attn = MultiHeadAttention(n_state, n_head) self.attn_ln = LayerNorm(n_state) self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None n_mlp = n_state * 4 self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)) self.mlp_ln = LayerNorm(n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, ): x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0] if self.cross_attn: x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0] x = x + self.mlp(self.mlp_ln(x)) return x class AudioEncoder(nn.Module): def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): super().__init__() self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] ) self.ln_post = LayerNorm(n_state) def forward(self, x: Tensor): """ x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) the mel spectrogram of the audio """ x = F.gelu(self.conv1(x)) x = F.gelu(self.conv2(x)) x = x.permute(0, 2, 1) len_x = x.shape[1] len_e = self.positional_embedding.shape[0] assert len_x <= len_e, "incorrect audio shape" pos_e = self.positional_embedding[:len_x, :] x = (x + pos_e).to(x.dtype) for block in self.blocks: x = block(x) x = self.ln_post(x) return x class TextDecoder(nn.Module): def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): super().__init__() self.token_embedding = nn.Embedding(n_vocab, n_state) self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state)) self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( [ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer)] ) self.ln = LayerNorm(n_state) mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1) self.register_buffer("mask", mask, persistent=False) def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): """ x : torch.LongTensor, shape = (batch_size, <= n_ctx) the text tokens xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx) the encoded audio features to be attended on """ offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]] x = x.to(xa.dtype) for block in self.blocks: x = block(x, xa, mask=self.mask, kv_cache=kv_cache) x = self.ln(x) logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float() return logits class Whisper(nn.Module): def __init__(self, dims: ModelDimensions): super().__init__() self.dims = dims self.encoder = AudioEncoder( self.dims.n_mels, self.dims.n_audio_ctx, self.dims.n_audio_state, self.dims.n_audio_head, self.dims.n_audio_layer, ) self.decoder = TextDecoder( self.dims.n_vocab, self.dims.n_text_ctx, self.dims.n_text_state, self.dims.n_text_head, self.dims.n_text_layer, ) def embed_audio(self, mel: torch.Tensor): return self.encoder(mel) def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor): return self.decoder(tokens, audio_features) def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]: return self.decoder(tokens, self.encoder(mel)) @property def device(self): return next(self.parameters()).device @property def is_multilingual(self): return self.dims.n_vocab == 51865 def install_kv_cache_hooks(self, cache: Optional[dict] = None): """ The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value tensors calculated for the previous positions. This method returns a dictionary that stores all caches, and the necessary hooks for the key and value projection modules that save the intermediate tensors to be reused during later calculations. Returns ------- cache : Dict[nn.Module, torch.Tensor] A dictionary object mapping the key/value projection modules to its cache hooks : List[RemovableHandle] List of PyTorch RemovableHandle objects to stop the hooks to be called """ cache = {**cache} if cache is not None else {} hooks = [] def save_to_cache(module, _, output): if module not in cache or output.shape[1] > self.decoder.positional_embedding.shape[0]: cache[module] = output # save as-is, for the first token or cross attention else: cache[module] = torch.cat([cache[module], output], dim=1).detach() return cache[module] def install_hooks(layer: nn.Module): if isinstance(layer, MultiHeadAttention): hooks.append(layer.key.register_forward_hook(save_to_cache)) hooks.append(layer.value.register_forward_hook(save_to_cache)) self.decoder.apply(install_hooks) return cache, hooks detect_language = detect_language_function decode = decode_function