import streamlit as st import cv2 from PIL import Image import os import numpy as np import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as viz_utils from object_detection.builders import model_builder from object_detection.utils import config_util CUSTOM_MODEL_NAME = 'my_ssd_mobnet' paths = { 'CHECKPOINT_PATH': os.path.join('Tensorflow', 'workspace', 'models', CUSTOM_MODEL_NAME), 'LABELMAP': os.path.join('Tensorflow', 'workspace', 'annotations', 'label_map.pbtxt') } configs = config_util.get_configs_from_pipeline_file(os.path.join(paths['CHECKPOINT_PATH'], 'pipeline.config')) detection_model = model_builder.build(model_config=configs['model'], is_training=False) ckpt = tf.compat.v2.train.Checkpoint(model=detection_model) ckpt.restore(os.path.join(paths['CHECKPOINT_PATH'], 'ckpt-3')).expect_partial() category_index = label_map_util.create_category_index_from_labelmap(paths['LABELMAP']) @tf.function def detect_fn(image): image, shapes = detection_model.preprocess(image) prediction_dict = detection_model.predict(image, shapes) detections = detection_model.postprocess(prediction_dict, shapes) return detections def main(): st.title('Furniture Detection') uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: image = np.array(Image.open(uploaded_file)) st.image(image, caption='Uploaded Image', use_column_width=True) st.write("") st.write("Detection In Process...") input_tensor = tf.convert_to_tensor(np.expand_dims(image, 0), dtype=tf.float32) detections = detect_fn(input_tensor) num_detections = int(detections.pop('num_detections')) detections = {key: value[0, :num_detections].numpy() for key, value in detections.items()} detections['num_detections'] = num_detections detections['detection_classes'] = detections['detection_classes'].astype(np.int64) label_id_offset = 1 image_np_with_detections = image.copy() viz_utils.visualize_boxes_and_labels_on_image_array( image_np_with_detections, detections['detection_boxes'], detections['detection_classes'] + label_id_offset, detections['detection_scores'], category_index, use_normalized_coordinates=True, max_boxes_to_draw=5, min_score_thresh=.3, agnostic_mode=False ) st.image(image_np_with_detections, caption='Detected Teeth', use_column_width=True) if __name__ == "__main__": main()