File size: 19,513 Bytes
73cfd62
 
 
 
 
 
 
 
 
 
78ab44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73cfd62
 
78ab44f
73cfd62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import whisper
from fastapi import FastAPI, UploadFile, File, Form
from pydantic import BaseModel
import gensim.downloader as api
from gensim.models import KeyedVectors
import torch
import pickle
import numpy as np
from gensim.models import KeyedVectors

def load_whisper_model(model_path, device='cpu'):
    # Load model architecture
    model = whisper.model.Whisper(
        whisper.model.ModelDimensions(
            n_mels=80,
            n_audio_ctx=1500,
            n_audio_state=384,
            n_audio_head=6,
            n_audio_layer=4,
            n_vocab=51865,
            n_text_ctx=448,
            n_text_state=384,
            n_text_head=6,
            n_text_layer=4
        )
    )
    
    # Load state dict
    state_dict = torch.load(model_path, map_location=device)
    model.load_state_dict(state_dict)
    model.eval()
    return model
    
# Load the saved Word2Vec model
word2vec_model = KeyedVectors.load("word2vec-google-news-300.model")
model = load_whisper_model("whisper_tiny_model.pt")

def load_model(pickle_file_path: str):
    """Load a model from a pickle file."""
    with open(pickle_file_path, 'rb') as file:
        model = pickle.load(file)
    return model

pronunciation_fluency_model = load_model("pronunciation_fluency_v2.pkl")

app = FastAPI()

def transcribe(audio_file_path: str, model):
    # Load audio and run inference
    result = model.transcribe(audio_file_path)
    return result["text"]

@app.post("/transcribe")
async def transcribe_audio(file: UploadFile = File(...)):

    # SAVE THE UPLOAD FILE TEMPORARILY
    with open(file.filename, "wb") as buffer:

        buffer.write(await file.read())

    # TRANSCRIBE THE AUDIO
    transcription = transcribe(file.filename, model)

    return { "transcription" : transcription }


def Get_P_F_Score( transcription : str ):
    words = transcription.split()

    cumulative_vector_representation = [0] * 300
    for word in words:
        if word in word2vec_model:
            cumulative_vector_representation += word2vec_model[word]

    print( cumulative_vector_representation[ 0 : 5] )

    print( len( cumulative_vector_representation) )

    if np.any(np.isnan(cumulative_vector_representation)):
        print("Input contains NaN values, handle missing values before prediction.")


    print("\n\n")

    output = pronunciation_fluency_model.predict( [ cumulative_vector_representation] )

    print( output )

    return output


def get_average_vector(sentence):
    # TOKENIZE THE SENTENCE INTO WORDS
    words = sentence.lower().split()

    # FILTER OUT WORDS NOT IN THE WORD2VEC VOCABULARY
    valid_words = [word for word in words if word in word2vec_model]

    # RETURN ZERO VECTOR IF NO VALID WORDS FOUND
    if not valid_words:
        return np.zeros(word2vec_model.vector_size)

    # COMPUTE AVERAGE VECTOR FOR VALID WORDS
    return np.mean([word2vec_model[word] for word in valid_words], axis=0)

from sklearn.metrics.pairwise import cosine_similarity

def get_similarity_score(topic, transcription ):
    # GET AVERAGE VECTORS FOR BOTH STRINGS
    topic_vector = get_average_vector(topic)
    transcription_vector = get_average_vector(transcription)

    print("topic vector: " , topic_vector)

    print(" transcription vector: " , transcription_vector )

    # RESHAPE VECTORS FOR COSINE SIMILARITY
    topic_vector = topic_vector.reshape(1, -1)
    transcription_vector = transcription_vector.reshape(1, -1)

    print(" reshaping done ")

    # COMPUTE COSINE SIMILARITY
    similarity = cosine_similarity(topic_vector, transcription_vector)

    print(" Similarity: " , similarity )

    output = similarity[ 0 ][ 0 ]

    output = max( output , 0 )

    output = min( 100 , output )

    # RETURN SIMILARITY SCORE (IT'S A SINGLE VALUE)
    return output



@app.post("/pronunciation_fluency_score")

async def pronunciation_fluency_scoring(
    file: UploadFile = File(...),
    topic: str = File(...)
):
    # SAVE THE UPLOAD FILE TEMPORARILY
    with open(file.filename, "wb") as buffer:

        buffer.write(await file.read())

    # TRANSCRIBE THE AUDIO
    transcription = transcribe(file.filename, model)

    pronunciation_fluency_score = Get_P_F_Score( transcription )

    print( pronunciation_fluency_score)

    print( type( pronunciation_fluency_score ) )

    content_score = get_similarity_score( topic , transcription) * 100




    return {

        "pronunciation score" : pronunciation_fluency_score[ 0 ][ 0 ] * 10 ,
        "fluency score" : pronunciation_fluency_score[ 0 ][ 1 ] * 10 ,
        "content score" : content_score
    }



import string
import asyncio
import re
from textblob import TextBlob
import nltk

def is_valid_summary_format(summary: str) -> bool:
    # CHECK IF THE SUMMARY CONTAINS ONLY BULLET POINTS
    if '-' in summary or '*' in summary:
        return True

    # CHECK IF THE SUMMARY CONSISTS ONLY OF VERY SHORT SENTENCES
    sentences = re.split(r'[.!?]', summary)
    short_sentences = sum(len(sentence.split()) <= 70 for sentence in sentences if sentence.strip())

    print(" Short Sentences: " , short_sentences )

    # CONSIDER IT A VALID FORMAT IF MORE THAN HALF OF THE SENTENCES ARE SHORT
    return short_sentences >= len(sentences) / 2

def form_score_summary(summary: str) -> float:
    # CONVERT THE SUMMARY TO UPPERCASE
    summary_upper = summary.upper()

    # REMOVE PUNCTUATION
    summary_clean = re.sub(r'[^\w\s]', '', summary_upper)

    # COUNT THE NUMBER OF WORDS
    word_count = len(summary_clean.split())

    # CHECK IF THE SUMMARY FORMAT IS VALID
    valid_format = is_valid_summary_format(summary)

    print("\n\n word count: ", word_count, " valid_format: ", valid_format)

    # CALCULATE SCORE BASED ON WORD COUNT AND FORMAT
    if valid_format:
        if 45 <= word_count <= 75:
            if word_count < 50:
                score = 50 + (word_count - 45) * (50 / 5)  # Gradual increase from 50
            elif word_count <= 75:
                score = 100  # Best score range
            else:
                score = 100 - (word_count - 70) * (50 / 5)  # Gradual decrease from 100
        else:
            score = 0  # Worst score if word count is out of acceptable range
    else:
        score = 0  # Worst score if format is invalid

    # CLAMP SCORE BETWEEN 0 AND 100

    score = float( score )

    return max(0.0, min(100.0, score))




def grammar_score(text: str) -> int:
    # Create a TextBlob object
    blob = TextBlob(text)

    # Check for grammatical errors
    errors = 0
    for sentence in blob.sentences:
        if sentence.correct() != sentence:
            errors += 1

    print(" \n\n Number of grammatical errors: " , errors )

    errors *= 5

    result = 100 - errors

    return max( 0 , result)


def vocabulary_score(text: str) -> float:

    print(" Performing vocabulary score \n\n")

    # Create a TextBlob object
    blob = TextBlob(text)

    # Extract words from the text
    words = blob.words

    # Count the total words and correctly spelled words
    total_words = len(words)
    correctly_spelled = sum(1 for word in words if word == TextBlob(word).correct())

    # Calculate the percentage of correctly spelled words
    if total_words == 0:
        return 0.0  # Avoid division by zero if there are no words

    percentage_correct = (correctly_spelled / total_words) * 100

    percentage_correct = min( percentage_correct , 100)
    percentage_correct = max( 0 , percentage_correct )

    percentage_correct = round( percentage_correct , 2 )


    print(" Percentage Correct: " , percentage_correct )


    return percentage_correct


@app.post("/summarization_scoring/")
def summarization_score( essay : str = Form() , summarization : str = Form() ):

    content_score_result, form_score_result, grammar_score_result, vocabulary_score_result = (
        float( get_similarity_score(essay, summarization) ) * 100,
        float( form_score_summary(summarization) ),
        float( grammar_score(summarization) ),
        float( vocabulary_score(summarization) )
    )

    print(" Completed \n\n\n ")

    response  = {

        "Content Score: " : content_score_result ,
        "Form Score: " : form_score_result  ,
        "Grammar Score: " : grammar_score_result ,
        "Vocabulary Score: " : vocabulary_score_result ,
        "Overall Summarization Score: " : round( (content_score_result + form_score_result + grammar_score_result + vocabulary_score_result) / 4 , 2)
    }

    print( response )

    return response



'''
transitional words can significantly contribute to the development, structure, and coherence of a text.

    Development: Transitional words help to show how ideas build upon each other and progress
        throughout the essay. They can introduce new points, provide examples, or signal a shift in focus.

    Structure: Transitional words help to organize the text by indicating relationships between
        ideas. They can show cause and effect, compare and contrast, or signal a sequence of events.

    Coherence: Transitional words help to create a smooth flow between sentences and paragraphs,
        making the text easier to understand and follow. They can clarify connections between
        ideas and prevent the text from feeling disjointed.
'''


addition_transitional_words = [
    "and", "also", "too", "in addition", "furthermore", "moreover", "besides", "likewise",
    "similarly", "equally important", "not to mention", "as well as", "what's more",
    "on top of that", "to boot", "in the same way", "by the same token", "similarly",
    "likewise", "in a similar vein", "correspondingly", "at the same time", "concurrently",
    "simultaneously", "not only... but also", "both... and", "as well", "and then",
    "and so forth", "and so on"
]
contrast_transitional_words = [
    "but", "however", "nevertheless", "nonetheless", "on the other hand", "on the contrary",
    "in contrast", "conversely", "although", "though", "even though", "despite", "in spite of",
    "regardless of", "while", "whereas", "yet", "still", "even so", "even if", "at the same time",
    "by the same token", "equally", "in common", "similarly", "just like", "just as", "as well as",
    "resemble", "equally", "in common", "by the same token"
]
cause_effect_transitional_words = [
    "because", "since", "as", "due to", "owing to", "thanks to", "on account of",
    "as a result", "consequently", "therefore", "hence", "thus", "so", "accordingly",
    "for this reason", "as a consequence", "in consequence", "in that case",
    "that being the case", "for that reason", "as a result of", "because of",
    "on account of", "owing to", "due to", "thanks to"
]
time_transitional_words = [
    "first", "second", "third", "next", "then", "after", "before", "later", "earlier",
    "previously", "subsequently", "following", "meanwhile", "simultaneously",
    "at the same time", "concurrently", "in the meantime", "in the interim", "afterwards",
    "thereafter", "finally", "lastly", "ultimately", "in conclusion", "to conclude",
    "in summary", "to sum up"
]
emphasis_transitional_words = [
    "indeed", "in fact", "certainly", "assuredly", "without a doubt", "undoubtedly",
    "unquestionably", "undeniably", "absolutely", "positively", "emphatically",
    "decisively", "strongly", "forcefully", "with conviction", "with certainty",
    "with assurance", "without hesitation", "without question", "without fail", "without doubt"
]
example_transitional_words = [
    "for example", "for instance", "such as", "like", "as an illustration", "to illustrate",
    "to demonstrate", "to exemplify", "namely", "specifically", "in particular",
    "particularly", "especially"
]
conclusion_transitional_words = [
    "in conclusion", "to conclude", "in summary", "to sum up", "finally", "lastly",
    "ultimately", "therefore", "hence", "thus", "so", "accordingly", "as a result",
    "consequently"
]
transition_between_sections_transitional_words = [
    "in the following section", "moving on to", "now", "let's explore",
    "turning our attention to", "to delve deeper", "we will now examine",
    "next", "at this point", "at this juncture", "furthermore", "moreover",
    "in addition"
]
miscellaneous_transition_words_list = [
    # Clarification
    "in other words", "that is to say", "namely", "to put it another way",
    "in simpler terms", "to clarify", "to explain further", "to elaborate",
    "to be more specific", "to be more exact",

    # Concession
    "admittedly", "granted", "of course", "naturally", "it is true that",
    "it must be admitted that", "it cannot be denied that", "it goes without saying that",

    # Digression
    "by the way", "incidentally", "aside from that", "apart from that",

    # Repetition
    "again", "once again", "still", "further", "furthermore", "moreover", "in addition"
]
contrast_within_sentence_transitional_words = [
    "but", "however", "nevertheless", "nonetheless", "on the other hand",
    "in contrast", "conversely", "although", "though", "even though",
    "despite", "in spite of", "regardless of", "while", "whereas",
    "yet", "still", "even so", "even if"
]
comparison_transitional_words = [
    "similarly", "likewise", "in the same way", "equally", "in common",
    "by the same token", "just like", "just as", "as well as", "resemble"
]
cause_and_effect_within_sentence_transitional_words = [
    "because", "since", "as", "due to", "owing to", "thanks to",
    "on account of", "as a result", "consequently", "therefore",
    "hence", "thus", "so", "accordingly", "for this reason",
    "as a consequence", "in consequence", "in that case",
    "that being the case", "for that reason", "as a result of",
    "because of", "on account of", "owing to", "due to", "thanks to"
]
emphasis_within_sentence_transitional_words = [
    "indeed", "in fact", "certainly", "assuredly", "without a doubt",
    "undoubtedly", "unquestionably", "undeniably", "absolutely",
    "positively", "emphatically", "decisively", "strongly", "forcefully",
    "with conviction", "with certainty", "with assurance",
    "without hesitation", "without question", "without fail", "without doubt"
]
concession_digression_repetition_transitional_words = [
    # Concession
    "admittedly", "granted", "of course", "naturally",
    "it is true that", "it must be admitted that",
    "it cannot be denied that", "it goes without saying that",

    # Digression
    "by the way", "incidentally", "aside from that",
    "apart from that",

    # Repetition
    "again", "once again", "still", "further",
    "furthermore", "moreover", "in addition"
]

def dsc_score( essay: str ):
    # Normalize the essay
    essay_lower = essay.lower()

    # Helper function to count occurrences of transitional words
    def count_transitional_words(word_list):
        return sum(essay_lower.count(word) for word in word_list)

    # Calculate counts for each type of transitional word list
    addition_count = count_transitional_words(addition_transitional_words)
    contrast_count = count_transitional_words(contrast_transitional_words)
    cause_effect_count = count_transitional_words(cause_effect_transitional_words)
    time_count = count_transitional_words(time_transitional_words)
    emphasis_count = count_transitional_words(emphasis_transitional_words)
    example_count = count_transitional_words(example_transitional_words)
    conclusion_count = count_transitional_words(conclusion_transitional_words)
    transition_between_sections_count = count_transitional_words(transition_between_sections_transitional_words)
    misc_count = count_transitional_words(miscellaneous_transition_words_list)
    contrast_within_sentence_count = count_transitional_words(contrast_within_sentence_transitional_words)
    comparison_count = count_transitional_words(comparison_transitional_words)
    cause_and_effect_within_sentence_count = count_transitional_words(cause_and_effect_within_sentence_transitional_words)
    emphasis_within_sentence_count = count_transitional_words(emphasis_within_sentence_transitional_words)
    concession_digression_repetition_count = count_transitional_words(concession_digression_repetition_transitional_words)

    # Calculate total transitional word count
    total_transitional_count = (
        addition_count + contrast_count + cause_effect_count + time_count +
        emphasis_count + example_count + conclusion_count +
        transition_between_sections_count + misc_count +
        contrast_within_sentence_count + comparison_count +
        cause_and_effect_within_sentence_count + emphasis_within_sentence_count +
        concession_digression_repetition_count
    )

    print("\n\n\n Total Transitional Words Count: " , total_transitional_count )

    words = essay.split()
    word_count = len(words)

    transitional_words_percentage = round( (  total_transitional_count / ( word_count * 1.00)  ) * 100  , 2 )

    print("]n\n\n transitional_words_percentage: " , transitional_words_percentage)

    '''
    Since a transition_words_percentage of 10% is considered as the ideal percentage of transitional words in an essay,
    we are deducting points with respect to how much is it deviating from its ideal percentage value.

    This have proven to be powerful to determine the Development, Structure and Coherence in essays

    '''
    return 100 - abs( transitional_words_percentage - 10 )


def is_capitalized(text: str) -> bool:
    """Check if the entire text is in capital letters."""
    return text.isupper()

def contains_punctuation(text: str) -> bool:
    """Check if the text contains any punctuation."""
    return bool(re.search(r'[.,!?;:]', text))

def is_bullet_points(text: str) -> bool:
    """Check if the text consists only of bullet points or very short sentences."""
    sentences = text.split('\n')
    bullet_points = any(line.strip().startswith('-') for line in sentences)
    short_sentences = sum(len(sentence.split()) <= 2 for sentence in sentences if sentence.strip())
    return bullet_points or short_sentences > len(sentences) / 2


def form_score_essay(essay: str) -> float:
    # REMOVE PUNCTUATION AND COUNT WORDS
    word_count = len(re.findall(r'\b\w+\b', essay))

    # CHECK ESSAY FORMAT
    is_capital = is_capitalized(essay)
    has_punctuation = contains_punctuation(essay)
    bullet_points_or_short = is_bullet_points(essay)

    # CALCULATE SCORE
    if 200 <= word_count <= 300 and has_punctuation and not is_capital and not bullet_points_or_short:
        score = 100.0  # BEST SCORE
    elif (120 <= word_count <= 199 or 301 <= word_count <= 380) and has_punctuation and not is_capital and not bullet_points_or_short:
        score = 50.0  # AVERAGE SCORE
    else:
        score = 0.0  # WORST SCORE

    return score


@app.post("/essay_scoring/")
async def essay_score( prompt : str = Form() , essay : str = Form() ):
    content_score_result, form_score_result, dsc_score_result, grammar_score_result = (
        float( get_similarity_score( prompt , essay ) ) * 100,
        float( form_score_essay( essay ) ),
        float( dsc_score( essay ) ),
        float( grammar_score( essay ) )
    )

    print( essay )

    return {

        "Content Score: " : content_score_result,
        "Form Score: " : form_score_result,
        "DSC Score: " : dsc_score_result,
        "Grammar Score: " : grammar_score_result,
        "Overall Essay Score" : ( content_score_result + form_score_result + dsc_score_result + grammar_score_result) / 4.0
    }