import gradio as gr from transformers import VitsModel, AutoTokenizer import torch import scipy.io.wavfile # Initialize TTS models tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False) zh_tts = TTS(model_name="tts_models/zh-CN/baker/tacotron2-DDC-GST", progress_bar=False, gpu=False) de_tts = TTS(model_name="tts_models/de/thorsten/vits", gpu=False) es_tts = TTS(model_name="tts_models/es/mai/tacotron2-DDC", progress_bar=False, gpu=False) tam_tts_model = VitsModel.from_pretrained("facebook/mms-tts-tam") tam_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tam") def text_to_speech(text: str, speaker_wav, speaker_wav_file, language: str): if speaker_wav_file and not speaker_wav: speaker_wav = speaker_wav_file file_path = "output.wav" if language == "zh-CN": zh_tts.tts_to_file(text, file_path=file_path) elif language == "de": de_tts.tts_to_file(text, file_path=file_path) elif language == "es": es_tts.tts_to_file(text, file_path=file_path) elif language == "tam": inputs = tam_tokenizer(text, return_tensors="pt") with torch.no_grad(): output = tam_tts_model(**inputs).waveform scipy.io.wavfile.write(file_path, rate=tam_tts_model.config.sampling_rate, data=output.numpy()) else: if speaker_wav is not None: tts.tts_to_file(text, speaker_wav=speaker_wav, language=language, file_path=file_path) else: tts.tts_to_file(text, speaker=tts.speakers[0], language=language, file_path=file_path) return file_path title = "Voice-Cloning-Demo" def toggle(choice): if choice == "mic": return gr.update(visible=True, value=None), gr.update(visible=False, value=None) else: return gr.update(visible=False, value=None), gr.update(visible=True, value=None) def handle_language_change(choice): if choice in ["zh-CN", "de", "es", "tam"]: return gr.update(visible=False), gr.update(visible=False), gr.update(visible(False)) else: return gr.update(visible=True), gr.update(visible(True)), gr.update(visible(True)) warming_text = """Please note that Chinese, German, Spanish, and Tamil are currently not supported for voice cloning.""" with gr.Blocks() as demo: with gr.Row(): with gr.Column(): text_input = gr.Textbox(label="Input the text", value="", max_lines=3) lan_input = gr.Radio(label="Language", choices=["en", "fr-fr", "pt-br", "zh-CN", "de", "es", "tam"], value="en") gr.Markdown(warming_text) radio = gr.Radio(["mic", "file"], value="mic", label="How would you like to upload your audio?") audio_input_mic = gr.Audio(label="Voice to clone", source="microphone", type="filepath", visible=True) audio_input_file = gr.Audio(label="Voice to clone", type="filepath", visible=False) with gr.Row(): with gr.Column(): btn_clear = gr.Button("Clear") with gr.Column(): btn = gr.Button("Submit", variant="primary") with gr.Column(): audio_output = gr.Audio(label="Output") btn.click(text_to_speech, inputs=[text_input, audio_input_mic, audio_input_file, lan_input], outputs=audio_output) radio.change(toggle, radio, [audio_input_mic, audio_input_file]) lan_input.change(handle_language_change, lan_input, [radio, audio_input_mic, audio_input_file]) demo.launch(enable_queue=True)