import gradio as gr from joblib import load import numpy as np import pandas as pd # Load your saved models rf = load('best_random_forest_model.joblib') dt = load('best_decision_tree_model.joblib') mlp = load('best_MLP_classifier_model.joblib') knn = load('best_knn_model.joblib') # Class names class_names = ["High Therapeutic Dose of Warfarin Required","Low Therapeutic Dose of Warfarin Required"] # Load training data for expected feature names training_data = pd.read_csv('dataset_train.csv') # Drop the 'Unnamed: 0' column if it exists if 'Unnamed: 0' in training_data.columns: training_data = training_data.drop(columns=['Unnamed: 0']) expected_feature_names = training_data.columns.tolist() # Define the prediction function def predict_warfarin_dose(gender, race, age, height, weight, diabetes, simvastatin, amiodarone, genotype, inr, algorithm): # Decode the encoded values gender = "Male" if gender == 1 else "Female" race = race_dict_inverse[race] age = age_dict_inverse[age] genotype = genotype_dict_inverse[genotype] # Convert input data to DataFrame for one-hot encoding input_data = pd.DataFrame([[gender, race, age, height, weight, diabetes, simvastatin, amiodarone, genotype, inr]], columns=['gender', 'race', 'age', 'height', 'weight', 'diabetes', 'simvastatin', 'amiodarone', 'genotype', 'inr']) # One-hot encode categorical features input_data_encoded = pd.get_dummies(input_data, columns=['gender', 'race', 'diabetes', 'simvastatin', 'amiodarone', 'genotype']) # Reindex the DataFrame to match expected feature names input_data_encoded = input_data_encoded.reindex(columns=expected_feature_names, fill_value=0) # Predict using the selected algorithm if algorithm == 'Random Forest': model = rf elif algorithm == 'Decision Tree': model = dt elif algorithm == 'MLP': model = mlp elif algorithm == 'KNN': model = knn else: raise ValueError("Invalid algorithm selected.") y_prob = model.predict_proba(input_data_encoded) class_idx = np.argmax(y_prob) preds_dict = {class_names[i]: float(y_prob[0, i]) for i in range(len(class_names))} name = class_names[class_idx] return name, preds_dict race_dict = { "African-American":0, "Asian":1, "Black":2, "Black African":3,"Black Caribbean":4,"Black or African American":5,"Black other":6 , "Caucasian":7,"Chinese":8,"Han Chinese":9,"Hispanic":10,"Indian":11,"Intermediate":12, "Japanese":13,"Korean":14, "Malay":15, "Other":16, "Other (Black British)":17, "Other (Hungarian)":18, "Other Mixed Race":19, "White":20} age_dict = { "10-19":0, "20-29":1, "30-39":2, "40-49":3,"50-59":4,"60-69":5,"70-79":6, "80-89":7,"90+":8} genotype_dict = {"A/A":0, "A/G":1, "G/G":2} # Invert dictionaries for decoding genotype_dict_inverse = {v: k for k, v in genotype_dict.items()} race_dict_inverse = {v: k for k, v in race_dict.items()} age_dict_inverse = {v: k for k, v in age_dict.items()} # Create Gradio interface gender_choices = [("Male", 1), ("Female", 0)] gender_module = gr.Dropdown(choices=gender_choices, label="Gender") # Assuming race_choices, age_choices, genotype_choices are already defined race_module = gr.Dropdown(choices=list(race_dict.items()), label="Race") age_module = gr.Dropdown(choices=list(age_dict.items()), label="Age Group") genotype_module = gr.Dropdown(choices=list(genotype_dict.items()), label="Genotype") height_module = gr.Number(label="Height") weight_module = gr.Number(label="Weight") diabetes_module = gr.Number(label="Diabetes") simvastatin_module = gr.Radio(choices=[0, 1], label="Simvastatin") amiodarone_module = gr.Radio(choices=[0, 1], label="Amiodarone") inr_module = gr.Number(label="INR Reported") algorithm_module = gr.Dropdown(choices=["Random Forest", "Decision Tree", "MLP", "KNN"], label="Algorithm") output_module1 = gr.Textbox(label="Predicted Class") output_module2 = gr.Label(label="Predicted Probability") iface = gr.Interface(fn=predict_warfarin_dose, inputs=[gender_module, race_module, age_module, height_module, weight_module, diabetes_module, simvastatin_module, amiodarone_module, genotype_module, inr_module, algorithm_module], outputs=[output_module1, output_module2]) iface.launch(debug=True,share=True)