from pathlib import Path import librosa import numpy as np import torch def load_model(vec_path): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("load model(s) from {}".format(vec_path)) from fairseq import checkpoint_utils models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( [vec_path], suffix="", ) model = models[0] model = model.to(device) model.eval() return model def get_vec_units(con_model, audio_path, dev): audio, sampling_rate = librosa.load(audio_path) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) feats = torch.from_numpy(audio).float() if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats.view(1, -1) padding_mask = torch.BoolTensor(feats.shape).fill_(False) inputs = { "source": feats.to(dev), "padding_mask": padding_mask.to(dev), "output_layer": 9, # layer 9 } with torch.no_grad(): logits = con_model.extract_features(**inputs) feats = con_model.final_proj(logits[0]) return feats if __name__ == '__main__': device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_path = "../../checkpoints/checkpoint_best_legacy_500.pt" # checkpoint_best_legacy_500.pt vec_model = load_model(model_path) # 这个不用改,自动在根目录下所有wav的同文件夹生成其对应的npy file_lists = list(Path("../../data/vecfox").rglob('*.wav')) nums = len(file_lists) count = 0 for wav_path in file_lists: npy_path = wav_path.with_suffix(".npy") npy_content = get_vec_units(vec_model, str(wav_path), device).cpu().numpy()[0] np.save(str(npy_path), npy_content) count += 1 print(f"hubert process:{round(count * 100 / nums, 2)}%")