import io
import os
import pandas as pd
import streamlit as st
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from langchain_community.document_loaders.pdf import PyPDFLoader
from langchain_core.documents.base import Document
from langchain_text_splitters import TokenTextSplitter
from process import Process
from tempfile import NamedTemporaryFile
from stqdm import stqdm
buffer = io.BytesIO()
st.cache_data()
st.set_page_config(page_title="NutriGenMe Paper Extractor")
st.title("NutriGenMe - Paper Extraction")
st.markdown("
In its latest version, the app is equipped to extract essential information from papers, including tables in both horizontal and vertical orientations, images, and text exclusively.
", unsafe_allow_html=True)
uploaded_files = st.file_uploader("Upload Paper(s) here :", type="pdf", accept_multiple_files=True)
col1, col2, col3 = st.columns(3)
with col1:
models = (
'gpt-4-turbo',
'gemini-1.5-pro-latest'
# 'llama-3-sonar-large-32k-chat',
# 'mixtral-8x7b-instruct',
)
model = st.selectbox(
'Model selection:', models, key='model'
)
with col2:
tokens = (
8000,
16000,
24000
)
chunk_option = st.selectbox(
'Token amounts per process:', tokens, key='token'
)
chunk_overlap = 0
with col3:
models_val = (
'gpt-4-turbo',
'gemini-1.5-pro-latest'
# 'llama-3-sonar-large-32k-chat',
# 'mixtral-8x7b-instruct',
)
model_val = st.selectbox(
'Model validator selection:', models, key='model_val'
)
if uploaded_files:
journals = []
parseButtonHV = st.button("Get Result", key='table_HV')
if parseButtonHV:
with st.status("Extraction in progress ...", expanded=True) as status:
start_time = datetime.now()
for uploaded_file in stqdm(uploaded_files):
with NamedTemporaryFile(dir='.', suffix=".pdf", delete=eval(os.getenv('DELETE_TEMP_PDF', 'True'))) as pdf:
pdf.write(uploaded_file.getbuffer())
# Load Documents
loader = PyPDFLoader(pdf.name)
pages = loader.load()
chunk_size = 120000
chunk_overlap = 0
docs = pages
# Split Documents
if chunk_option:
docs = [Document('\n'.join([page.page_content for page in pages]))]
docs[0].metadata = {'source': pages[0].metadata['source']}
chunk_size = chunk_option
chunk_overlap = int(0.25 * chunk_size)
text_splitter = TokenTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
chunks = text_splitter.split_documents(docs)
# Start extraction process in parallel
process = Process(model, model_val)
with ThreadPoolExecutor() as executor:
result_gsd = executor.submit(process.get_entity, (chunks, 'gsd'))
result_summ = executor.submit(process.get_entity, (chunks, 'summ'))
result = executor.submit(process.get_entity, (chunks, 'all'))
result_one = executor.submit(process.get_entity_one, [c.page_content for c in chunks[:1]])
result_table = executor.submit(process.get_table, pdf.name)
result_gsd = result_gsd.result()
result_summ = result_summ.result()
result = result.result()
result_one = result_one.result()
res_gene, res_snp, res_dis = result_table.result()
# Combine Result
result['Genes'] = res_gene + result_gsd['Genes']
result['SNPs'] = res_snp + result_gsd['SNPs']
result['Diseases'] = res_dis + result_gsd['Diseases']
result['Conclusion'] = result_summ
for k in result_one.keys():
result[k] = result_one[k]
if len(result['Genes']) == 0:
result['Genes'] = ['']
num_rows = max(max(len(result['Genes']), len(result['SNPs'])), len(result['Diseases']))
# Adjust Genes, SNPs, Diseases
for k in ['Genes', 'SNPs', 'Diseases']:
while len(result[k]) < num_rows:
result[k].append('')
# Temporary handling
result[k] = result[k][:num_rows]
# Key Column
result = {key: value if isinstance(value, list) else [value] * num_rows for key, value in result.items()}
dataframe = pd.DataFrame(result)
dataframe = dataframe[['Genes', 'SNPs', 'Diseases', 'Title', 'Authors', 'Publisher Name', 'Publication Year', 'Population', 'Sample Size', 'Study Methodology', 'Study Level', 'Conclusion']]
dataframe = dataframe[dataframe['Genes'].astype(bool)].reset_index(drop=True)
dataframe.drop_duplicates(['Genes', 'SNPs'], inplace=True)
dataframe.reset_index(drop=True, inplace=True)
# Validate Result
df, df_no_llm, df_clean = process.validate(dataframe)
end_time = datetime.now()
st.write("Success in ", round((end_time.timestamp() - start_time.timestamp()) / 60, 2), "minutes")
st.dataframe(df)
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
df.to_excel(writer, sheet_name='Result Cleaned API LLM')
df_no_llm.to_excel(writer, sheet_name='Result Cleaned API')
df_clean.to_excel(writer, sheet_name='Result Cleaned')
dataframe.to_excel(writer, sheet_name='Original')
writer.close()
st.download_button(
label="Save Result",
data=buffer,
file_name=f"{uploaded_file.name.replace('.pdf', '')}_{chunk_option}_{model.split('-')[0]}_{model_val.split('-')[0]}.xlsx",
mime='application/vnd.ms-excel'
)