import base64 import io import json import queue import random import sys import traceback import wave from argparse import ArgumentParser from http import HTTPStatus from pathlib import Path from typing import Annotated, Any, Literal, Optional import numpy as np import ormsgpack import pyrootutils import soundfile as sf import torch import torchaudio from baize.datastructures import ContentType from kui.asgi import ( Body, FactoryClass, HTTPException, HttpRequest, HttpView, JSONResponse, Kui, OpenAPI, StreamResponse, ) from kui.asgi.routing import MultimethodRoutes from loguru import logger from pydantic import BaseModel, Field, conint pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) # from fish_speech.models.vqgan.lit_module import VQGAN from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture from fish_speech.text.chn_text_norm.text import Text as ChnNormedText from fish_speech.utils import autocast_exclude_mps from tools.commons import ServeReferenceAudio, ServeTTSRequest from tools.file import AUDIO_EXTENSIONS, audio_to_bytes, list_files, read_ref_text from tools.llama.generate import ( GenerateRequest, GenerateResponse, WrappedGenerateResponse, launch_thread_safe_queue, ) from tools.vqgan.inference import load_model as load_decoder_model def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1): buffer = io.BytesIO() with wave.open(buffer, "wb") as wav_file: wav_file.setnchannels(channels) wav_file.setsampwidth(bit_depth // 8) wav_file.setframerate(sample_rate) wav_header_bytes = buffer.getvalue() buffer.close() return wav_header_bytes # Define utils for web server async def http_execption_handler(exc: HTTPException): return JSONResponse( dict( statusCode=exc.status_code, message=exc.content, error=HTTPStatus(exc.status_code).phrase, ), exc.status_code, exc.headers, ) async def other_exception_handler(exc: "Exception"): traceback.print_exc() status = HTTPStatus.INTERNAL_SERVER_ERROR return JSONResponse( dict(statusCode=status, message=str(exc), error=status.phrase), status, ) def load_audio(reference_audio, sr): if len(reference_audio) > 255 or not Path(reference_audio).exists(): audio_data = reference_audio reference_audio = io.BytesIO(audio_data) waveform, original_sr = torchaudio.load( reference_audio, backend="sox" if sys.platform == "linux" else "soundfile" ) if waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) if original_sr != sr: resampler = torchaudio.transforms.Resample(orig_freq=original_sr, new_freq=sr) waveform = resampler(waveform) audio = waveform.squeeze().numpy() return audio def encode_reference(*, decoder_model, reference_audio, enable_reference_audio): if enable_reference_audio and reference_audio is not None: # Load audios, and prepare basic info here reference_audio_content = load_audio( reference_audio, decoder_model.spec_transform.sample_rate ) audios = torch.from_numpy(reference_audio_content).to(decoder_model.device)[ None, None, : ] audio_lengths = torch.tensor( [audios.shape[2]], device=decoder_model.device, dtype=torch.long ) logger.info( f"Loaded audio with {audios.shape[2] / decoder_model.spec_transform.sample_rate:.2f} seconds" ) # VQ Encoder if isinstance(decoder_model, FireflyArchitecture): prompt_tokens = decoder_model.encode(audios, audio_lengths)[0][0] logger.info(f"Encoded prompt: {prompt_tokens.shape}") else: prompt_tokens = None logger.info("No reference audio provided") return prompt_tokens def decode_vq_tokens( *, decoder_model, codes, ): feature_lengths = torch.tensor([codes.shape[1]], device=decoder_model.device) logger.info(f"VQ features: {codes.shape}") if isinstance(decoder_model, FireflyArchitecture): # VQGAN Inference return decoder_model.decode( indices=codes[None], feature_lengths=feature_lengths, )[0].squeeze() raise ValueError(f"Unknown model type: {type(decoder_model)}") routes = MultimethodRoutes(base_class=HttpView) def get_content_type(audio_format): if audio_format == "wav": return "audio/wav" elif audio_format == "flac": return "audio/flac" elif audio_format == "mp3": return "audio/mpeg" else: return "application/octet-stream" @torch.inference_mode() def inference(req: ServeTTSRequest): idstr: str | None = req.reference_id if idstr is not None: ref_folder = Path("references") / idstr ref_folder.mkdir(parents=True, exist_ok=True) ref_audios = list_files( ref_folder, AUDIO_EXTENSIONS, recursive=True, sort=False ) prompt_tokens = [ encode_reference( decoder_model=decoder_model, reference_audio=audio_to_bytes(str(ref_audio)), enable_reference_audio=True, ) for ref_audio in ref_audios ] prompt_texts = [ read_ref_text(str(ref_audio.with_suffix(".lab"))) for ref_audio in ref_audios ] else: # Parse reference audio aka prompt refs = req.references if refs is None: refs = [] prompt_tokens = [ encode_reference( decoder_model=decoder_model, reference_audio=ref.audio, enable_reference_audio=True, ) for ref in refs ] prompt_texts = [ref.text for ref in refs] # LLAMA Inference request = dict( device=decoder_model.device, max_new_tokens=req.max_new_tokens, text=( req.text if not req.normalize else ChnNormedText(raw_text=req.text).normalize() ), top_p=req.top_p, repetition_penalty=req.repetition_penalty, temperature=req.temperature, compile=args.compile, iterative_prompt=req.chunk_length > 0, chunk_length=req.chunk_length, max_length=2048, prompt_tokens=prompt_tokens, prompt_text=prompt_texts, ) response_queue = queue.Queue() llama_queue.put( GenerateRequest( request=request, response_queue=response_queue, ) ) if req.streaming: yield wav_chunk_header() segments = [] while True: result: WrappedGenerateResponse = response_queue.get() if result.status == "error": raise result.response break result: GenerateResponse = result.response if result.action == "next": break with autocast_exclude_mps( device_type=decoder_model.device.type, dtype=args.precision ): fake_audios = decode_vq_tokens( decoder_model=decoder_model, codes=result.codes, ) fake_audios = fake_audios.float().cpu().numpy() if req.streaming: yield (fake_audios * 32768).astype(np.int16).tobytes() else: segments.append(fake_audios) if req.streaming: return if len(segments) == 0: raise HTTPException( HTTPStatus.INTERNAL_SERVER_ERROR, content="No audio generated, please check the input text.", ) fake_audios = np.concatenate(segments, axis=0) yield fake_audios async def inference_async(req: ServeTTSRequest): for chunk in inference(req): yield chunk async def buffer_to_async_generator(buffer): yield buffer @routes.http.post("/v1/tts") async def api_invoke_model( req: Annotated[ServeTTSRequest, Body(exclusive=True)], ): """ Invoke model and generate audio """ if args.max_text_length > 0 and len(req.text) > args.max_text_length: raise HTTPException( HTTPStatus.BAD_REQUEST, content=f"Text is too long, max length is {args.max_text_length}", ) if req.streaming and req.format != "wav": raise HTTPException( HTTPStatus.BAD_REQUEST, content="Streaming only supports WAV format", ) if req.streaming: return StreamResponse( iterable=inference_async(req), headers={ "Content-Disposition": f"attachment; filename=audio.{req.format}", }, content_type=get_content_type(req.format), ) else: fake_audios = next(inference(req)) buffer = io.BytesIO() sf.write( buffer, fake_audios, decoder_model.spec_transform.sample_rate, format=req.format, ) return StreamResponse( iterable=buffer_to_async_generator(buffer.getvalue()), headers={ "Content-Disposition": f"attachment; filename=audio.{req.format}", }, content_type=get_content_type(req.format), ) @routes.http.post("/v1/health") async def api_health(): """ Health check """ return JSONResponse({"status": "ok"}) def parse_args(): parser = ArgumentParser() parser.add_argument( "--llama-checkpoint-path", type=str, default="checkpoints/fish-speech-1.4", ) parser.add_argument( "--decoder-checkpoint-path", type=str, default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", ) parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq") parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--half", action="store_true") parser.add_argument("--compile", action="store_true") parser.add_argument("--max-text-length", type=int, default=0) parser.add_argument("--listen", type=str, default="127.0.0.1:8080") parser.add_argument("--workers", type=int, default=1) parser.add_argument("--use-auto-rerank", type=bool, default=True) return parser.parse_args() # Define Kui app openapi = OpenAPI( { "title": "Fish Speech API", }, ).routes class MsgPackRequest(HttpRequest): async def data(self) -> Annotated[Any, ContentType("application/msgpack")]: if self.content_type == "application/msgpack": return ormsgpack.unpackb(await self.body) raise HTTPException( HTTPStatus.UNSUPPORTED_MEDIA_TYPE, headers={"Accept": "application/msgpack"}, ) app = Kui( routes=routes + openapi[1:], # Remove the default route exception_handlers={ HTTPException: http_execption_handler, Exception: other_exception_handler, }, factory_class=FactoryClass(http=MsgPackRequest), cors_config={}, ) if __name__ == "__main__": import uvicorn args = parse_args() args.precision = torch.half if args.half else torch.bfloat16 logger.info("Loading Llama model...") llama_queue = launch_thread_safe_queue( checkpoint_path=args.llama_checkpoint_path, device=args.device, precision=args.precision, compile=args.compile, ) logger.info("Llama model loaded, loading VQ-GAN model...") decoder_model = load_decoder_model( config_name=args.decoder_config_name, checkpoint_path=args.decoder_checkpoint_path, device=args.device, ) logger.info("VQ-GAN model loaded, warming up...") # Dry run to check if the model is loaded correctly and avoid the first-time latency list( inference( ServeTTSRequest( text="Hello world.", references=[], reference_id=None, max_new_tokens=0, top_p=0.7, repetition_penalty=1.2, temperature=0.7, emotion=None, format="wav", ) ) ) logger.info(f"Warming up done, starting server at http://{args.listen}") host, port = args.listen.split(":") uvicorn.run(app, host=host, port=int(port), workers=args.workers, log_level="info")