import joblib from catboost import CatBoostClassifier from xgboost import XGBClassifier from config import CATBOOST_MODEL_PATH, XGB_MODEL_PATH, RF_MODEL_PATH def save_models(models): """ Save trained models """ models["CatBoost"].save_model(CATBOOST_MODEL_PATH) if models["XGBoost"] is not None: # Save XGBoost model in binary format to reduce memory usage models["XGBoost"].get_booster().save_model(XGB_MODEL_PATH) joblib.dump(models["RandomForest"], RF_MODEL_PATH) print("✅ Models saved successfully!") def load_models(): """ Load trained models """ catboost = CatBoostClassifier() catboost.load_model(CATBOOST_MODEL_PATH) xgb = XGBClassifier() # Load XGBoost model in binary format xgb.load_model(XGB_MODEL_PATH) rf = joblib.load(RF_MODEL_PATH) return {"CatBoost": catboost, "XGBoost": xgb, "RandomForest": rf}