import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from torchvision.utils import save_image
from pope_loader import POPEDataSet
from minigpt4.common.dist_utils import get_rank
from minigpt4.models import load_preprocess
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
MODEL_EVAL_CONFIG_PATH = {
"minigpt4": "eval_configs/minigpt4_eval.yaml",
"instructblip": "eval_configs/instructblip_eval.yaml",
"lrv_instruct": "eval_configs/lrv_instruct_eval.yaml",
"shikra": "eval_configs/shikra_eval.yaml",
"llava-1.5": "eval_configs/llava-1.5_eval.yaml",
}
POPE_PATH = {
"random": "pope_coco/coco_pope_random.json",
"popular": "pope_coco/coco_pope_popular.json",
"adversarial": "pope_coco/coco_pope_adversarial.json",
}
INSTRUCTION_TEMPLATE = {
"minigpt4": "###Human: ###Assistant:",
"instructblip": "",
"lrv_instruct": "###Human: ###Assistant:",
"shikra": "USER: ASSISTANT:",
"llava-1.5": "USER: ASSISTANT:"
}
def parse_args():
parser = argparse.ArgumentParser(description="POPE-Adv evaluation on LVLMs.")
parser.add_argument("--model", type=str, help="model")
parser.add_argument("--pope-type", type=str, help="model")
# parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
parser.add_argument("--data_path", type=str, default="COCO_2014/val2014/", help="data path")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--num_workers", type=int, default=2, help="num workers")
parser.add_argument("--beam", type=int)
parser.add_argument("--sample", action='store_true')
parser.add_argument("--scale_factor", type=float, default=50)
parser.add_argument("--threshold", type=int, default=15)
parser.add_argument("--num_attn_candidates", type=int, default=5)
parser.add_argument("--penalty_weights", type=float, default=1.0)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def print_acc(pred_list, label_list):
pos = 1
neg = 0
yes_ratio = pred_list.count(1) / len(pred_list)
# unknown_ratio = pred_list.count(2) / len(pred_list)
TP, TN, FP, FN = 0, 0, 0, 0
for pred, label in zip(pred_list, label_list):
if pred == pos and label == pos:
TP += 1
elif pred == pos and label == neg:
FP += 1
elif pred == neg and label == neg:
TN += 1
elif pred == neg and label == pos:
FN += 1
print('TP\tFP\tTN\tFN\t')
print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN))
precision = float(TP) / float(TP + FP)
recall = float(TP) / float(TP + FN)
f1 = 2*precision*recall / (precision + recall)
acc = (TP + TN) / (TP + TN + FP + FN)
print('Accuracy: {}'.format(acc))
print('Precision: {}'.format(precision))
print('Recall: {}'.format(recall))
print('F1 score: {}'.format(f1))
print('Yes ratio: {}'.format(yes_ratio))
def recorder(out, pred_list):
NEG_WORDS = ["No", "not", "no", "NO"]
for line in out:
line = line.replace('.', '')
line = line.replace(',', '')
words = line.split(' ')
if any(word in NEG_WORDS for word in words) or any(word.endswith("n't") for word in words):
pred_list.append(0)
else:
pred_list.append(1)
return pred_list
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model]
args.pope_path = POPE_PATH[args.pope_type]
cfg = Config(args)
setup_seeds(cfg)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# ========================================
# Model Initialization
# ========================================
print('Initializing Model')
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to(device)
model.eval()
vis_processors, txt_processors = load_preprocess(cfg.get_config().preprocess)
# vis_processors.do_normalize = False
print(vis_processors["eval"].transform)
print("Done!")
# load pope data
pope_dataset = POPEDataSet(
pope_path=args.pope_path,
data_path=args.data_path,
trans=vis_processors["eval"]
)
pope_loader = torch.utils.data.DataLoader(
pope_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
drop_last=False
)
print ("load data finished")
print("Start eval...")
pred_list, pred_list_s, label_list = [], [], []
for batch_id, data in tqdm(enumerate(pope_loader), total=len(pope_loader)):
image = data["image"]
qu = data["query"]
label = data["label"]
label_list = label_list + list(label)
template = INSTRUCTION_TEMPLATE[args.model]
qu = [template.replace("", q) for q in qu]
image = image.to(device)
label = torch.Tensor(label).to(device)
with torch.inference_mode():
with torch.no_grad():
out = model.generate(
{"image": image, "prompt":qu},
use_nucleus_sampling=args.sample,
num_beams=args.beam,
max_new_tokens=10,
output_attentions=True,
opera_decoding=True,
scale_factor=args.scale_factor,
threshold=args.threshold,
num_attn_candidates=args.num_attn_candidates,
penalty_weights=args.penalty_weights,
)
pred_list = recorder(out, pred_list)
for line in out:
print(line)
print("[{}, {}]===============================================".format(args.scale_factor, args.num_attn_candidates))
if len(pred_list) != 0:
print_acc(pred_list, label_list)
if len(pred_list_s) != 0:
print_acc(pred_list_s, label_list)
if __name__ == "__main__":
main()