import argparse import os import random import numpy as np import torch import torch.backends.cudnn as cudnn from tqdm import tqdm from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from torchvision.utils import save_image from pope_loader import POPEDataSet from minigpt4.common.dist_utils import get_rank from minigpt4.models import load_preprocess from minigpt4.common.config import Config from minigpt4.common.dist_utils import get_rank from minigpt4.common.registry import registry # imports modules for registration from minigpt4.datasets.builders import * from minigpt4.models import * from minigpt4.processors import * from minigpt4.runners import * from minigpt4.tasks import * MODEL_EVAL_CONFIG_PATH = { "minigpt4": "eval_configs/minigpt4_eval.yaml", "instructblip": "eval_configs/instructblip_eval.yaml", "lrv_instruct": "eval_configs/lrv_instruct_eval.yaml", "shikra": "eval_configs/shikra_eval.yaml", "llava-1.5": "eval_configs/llava-1.5_eval.yaml", } POPE_PATH = { "random": "pope_coco/coco_pope_random.json", "popular": "pope_coco/coco_pope_popular.json", "adversarial": "pope_coco/coco_pope_adversarial.json", } INSTRUCTION_TEMPLATE = { "minigpt4": "###Human: ###Assistant:", "instructblip": "", "lrv_instruct": "###Human: ###Assistant:", "shikra": "USER: ASSISTANT:", "llava-1.5": "USER: ASSISTANT:" } def parse_args(): parser = argparse.ArgumentParser(description="POPE-Adv evaluation on LVLMs.") parser.add_argument("--model", type=str, help="model") parser.add_argument("--pope-type", type=str, help="model") # parser.add_argument("--cfg-path", required=True, help="path to configuration file.") parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) parser.add_argument("--data_path", type=str, default="COCO_2014/val2014/", help="data path") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--num_workers", type=int, default=2, help="num workers") parser.add_argument("--beam", type=int) parser.add_argument("--sample", action='store_true') parser.add_argument("--scale_factor", type=float, default=50) parser.add_argument("--threshold", type=int, default=15) parser.add_argument("--num_attn_candidates", type=int, default=5) parser.add_argument("--penalty_weights", type=float, default=1.0) args = parser.parse_args() return args def setup_seeds(config): seed = config.run_cfg.seed + get_rank() random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True def print_acc(pred_list, label_list): pos = 1 neg = 0 yes_ratio = pred_list.count(1) / len(pred_list) # unknown_ratio = pred_list.count(2) / len(pred_list) TP, TN, FP, FN = 0, 0, 0, 0 for pred, label in zip(pred_list, label_list): if pred == pos and label == pos: TP += 1 elif pred == pos and label == neg: FP += 1 elif pred == neg and label == neg: TN += 1 elif pred == neg and label == pos: FN += 1 print('TP\tFP\tTN\tFN\t') print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN)) precision = float(TP) / float(TP + FP) recall = float(TP) / float(TP + FN) f1 = 2*precision*recall / (precision + recall) acc = (TP + TN) / (TP + TN + FP + FN) print('Accuracy: {}'.format(acc)) print('Precision: {}'.format(precision)) print('Recall: {}'.format(recall)) print('F1 score: {}'.format(f1)) print('Yes ratio: {}'.format(yes_ratio)) def recorder(out, pred_list): NEG_WORDS = ["No", "not", "no", "NO"] for line in out: line = line.replace('.', '') line = line.replace(',', '') words = line.split(' ') if any(word in NEG_WORDS for word in words) or any(word.endswith("n't") for word in words): pred_list.append(0) else: pred_list.append(1) return pred_list def main(): args = parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) args.cfg_path = MODEL_EVAL_CONFIG_PATH[args.model] args.pope_path = POPE_PATH[args.pope_type] cfg = Config(args) setup_seeds(cfg) device = torch.device("cuda") if torch.cuda.is_available() else "cpu" # ======================================== # Model Initialization # ======================================== print('Initializing Model') model_config = cfg.model_cfg model_config.device_8bit = args.gpu_id model_cls = registry.get_model_class(model_config.arch) model = model_cls.from_config(model_config).to(device) model.eval() vis_processors, txt_processors = load_preprocess(cfg.get_config().preprocess) # vis_processors.do_normalize = False print(vis_processors["eval"].transform) print("Done!") # load pope data pope_dataset = POPEDataSet( pope_path=args.pope_path, data_path=args.data_path, trans=vis_processors["eval"] ) pope_loader = torch.utils.data.DataLoader( pope_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, drop_last=False ) print ("load data finished") print("Start eval...") pred_list, pred_list_s, label_list = [], [], [] for batch_id, data in tqdm(enumerate(pope_loader), total=len(pope_loader)): image = data["image"] qu = data["query"] label = data["label"] label_list = label_list + list(label) template = INSTRUCTION_TEMPLATE[args.model] qu = [template.replace("", q) for q in qu] image = image.to(device) label = torch.Tensor(label).to(device) with torch.inference_mode(): with torch.no_grad(): out = model.generate( {"image": image, "prompt":qu}, use_nucleus_sampling=args.sample, num_beams=args.beam, max_new_tokens=10, output_attentions=True, opera_decoding=True, scale_factor=args.scale_factor, threshold=args.threshold, num_attn_candidates=args.num_attn_candidates, penalty_weights=args.penalty_weights, ) pred_list = recorder(out, pred_list) for line in out: print(line) print("[{}, {}]===============================================".format(args.scale_factor, args.num_attn_candidates)) if len(pred_list) != 0: print_acc(pred_list, label_list) if len(pred_list_s) != 0: print_acc(pred_list_s, label_list) if __name__ == "__main__": main()