from transformers import AutoModelForImageClassification, ViTImageProcessor import gradio as gr from PIL import Image import torch model = AutoModelForImageClassification.from_pretrained("KFrimps/oxford-pets-vit-from-scratch") processor = ViTImageProcessor.from_pretrained("KFrimps/oxford-pets-vit-from-scratch") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) id2label = model.config.id2label def predict(image): """Predicts the class of the input image using the fine-tuned student model.""" # Convert the Gradio image to a PIL Image image = Image.fromarray(image) # Preprocess the image inputs = processor(image, return_tensors="pt").to(device) # Make prediction with torch.no_grad(): outputs = model(**inputs) predicted_class_idx = torch.argmax(outputs.logits, dim=1).item() # Get predicted class label predicted_class = id2label[predicted_class_idx] return predicted_class iface = gr.Interface( fn=predict, inputs=gr.Image(type="numpy"), outputs="text", title="Pets Image Classification", description="Upload an image of a cat or dog to get its breed prediction.", ).launch()