_target_: salad.models.phase2.Phase2Model network: _target_: salad.model_components.network.CondDiffNetwork input_dim: 512 residual: true context_dim: 16 # gaussian condition dim. context_embedding_dim: 512 embedding_dim: 512 encoder_use_time: false encoder_type: transformer decoder_type: transformer_encoder # we don't use cross attention. enc_num_layers: 6 dec_num_layers: 6 use_timestep_embedder: true timestep_embedder_dim: 128 variance_schedule: _target_: salad.model_components.variance_schedule.VarianceSchedule num_steps: &time_steps 1000 beta_1: 1e-4 beta_T: 0.05 mode: linear # optimizer lr: 1e-4 batch_size: 64 # dataset dataset_kwargs: data_path: spaghetti_chair_latents.hdf5 repeat: 3 data_keys: ["s_j_affine", "g_js_affine"] global_normalization: &normalization null global_normalization: *normalization # normalize pi, eigenvalues. num_timesteps: *time_steps faster: true validation_step: 10 no_run_validation: false spaghetti_tag: "chairs_large" # or airplanes, tables