_target_: salad.models.language_phase2.LangPhase2Model network: _target_: salad.model_components.network.CondDiffNetwork input_dim: 512 residual: true context_dim: 784 # concat of 768 lang feat and gaussian. context_embedding_dim: 1024 embedding_dim: 512 encoder_use_time: false encoder_type: transformer decoder_type: transformer_encoder enc_num_layers: 6 dec_num_layers: 6 use_timestep_embedder: true timestep_embedder_dim: 128 variance_schedule: _target_: salad.model_components.variance_schedule.VarianceSchedule num_steps: &time_steps 1000 beta_1: 1e-4 beta_T: 0.05 mode: linear # optimizer lr: 1e-4 batch_size: 64 # dataset dataset_kwargs: data_path: spaghetti_chair_latents.hdf5 repeat: 1 data_keys: ["s_j_affine", "g_js_affine"] only_easy_context: false global_normalization: &normalization false global_normalization: *normalization num_timesteps: *time_steps faster: true validation_step: 10 no_run_validation: false spaghetti_tag: "chairs_large" # or airplanes, tables text_encoder_freeze: false use_lstm: true classifier_free_guidance: true conditioning_dropout_prob: 0.2