import ast
import copy
import functools
import inspect
import itertools
import json
import os
import pprint
import random
import shutil
import sys
import time
import traceback
import typing
import uuid
import filelock
import pandas as pd
import requests
import tabulate
from iterators import TimeoutIterator
from gradio_utils.css import get_css
from gradio_utils.prompt_form import make_prompt_form, make_chatbots
# This is a hack to prevent Gradio from phoning home when it gets imported
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
def my_get(url, **kwargs):
print('Gradio HTTP request redirected to localhost :)', flush=True)
kwargs.setdefault('allow_redirects', True)
return requests.api.request('get', 'http://127.0.0.1/', **kwargs)
original_get = requests.get
requests.get = my_get
import gradio as gr
requests.get = original_get
def fix_pydantic_duplicate_validators_error():
try:
from pydantic import class_validators
class_validators.in_ipython = lambda: True # type: ignore[attr-defined]
except ImportError:
pass
fix_pydantic_duplicate_validators_error()
from enums import DocumentChoices, no_model_str, no_lora_str, no_server_str, LangChainAction, LangChainMode
from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js, spacing_xsm, radius_xsm, \
text_xsm
from prompter import prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, non_hf_types, \
get_prompt
from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \
ping, get_short_name, get_url, makedirs, get_kwargs, remove, system_info, ping_gpu
from src.gen import get_model, languages_covered, evaluate, eval_func_param_names, score_qa, langchain_modes, \
inputs_kwargs_list, scratch_base_dir, no_default_param_names, \
eval_func_param_names_defaults, get_max_max_new_tokens, get_minmax_top_k_docs, history_to_context, langchain_actions
from apscheduler.schedulers.background import BackgroundScheduler
def fix_text_for_gradio(text, fix_new_lines=False, fix_latex_dollars=True):
if fix_latex_dollars:
ts = text.split('```')
for parti, part in enumerate(ts):
inside = parti % 2 == 1
if not inside:
ts[parti] = ts[parti].replace('$', '﹩')
text = '```'.join(ts)
if fix_new_lines:
# let Gradio handle code, since got improved recently
## FIXME: below conflicts with Gradio, but need to see if can handle multiple \n\n\n etc. properly as is.
# ensure good visually, else markdown ignores multiple \n
# handle code blocks
ts = text.split('```')
for parti, part in enumerate(ts):
inside = parti % 2 == 1
if not inside:
ts[parti] = ts[parti].replace('\n', '
')
text = '```'.join(ts)
return text
def go_gradio(**kwargs):
allow_api = kwargs['allow_api']
is_public = kwargs['is_public']
is_hf = kwargs['is_hf']
memory_restriction_level = kwargs['memory_restriction_level']
n_gpus = kwargs['n_gpus']
admin_pass = kwargs['admin_pass']
model_state0 = kwargs['model_state0']
model_states = kwargs['model_states']
score_model_state0 = kwargs['score_model_state0']
dbs = kwargs['dbs']
db_type = kwargs['db_type']
visible_langchain_modes = kwargs['visible_langchain_modes']
visible_langchain_actions = kwargs['visible_langchain_actions']
allow_upload_to_user_data = kwargs['allow_upload_to_user_data']
allow_upload_to_my_data = kwargs['allow_upload_to_my_data']
enable_sources_list = kwargs['enable_sources_list']
enable_url_upload = kwargs['enable_url_upload']
enable_text_upload = kwargs['enable_text_upload']
use_openai_embedding = kwargs['use_openai_embedding']
hf_embedding_model = kwargs['hf_embedding_model']
enable_captions = kwargs['enable_captions']
captions_model = kwargs['captions_model']
enable_ocr = kwargs['enable_ocr']
caption_loader = kwargs['caption_loader']
# easy update of kwargs needed for evaluate() etc.
queue = True
allow_upload = allow_upload_to_user_data or allow_upload_to_my_data
kwargs.update(locals())
if 'mbart-' in kwargs['model_lower']:
instruction_label_nochat = "Text to translate"
else:
instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \
" use Enter for multiple input lines)"
title = 'h2oGPT'
more_info = """h2oGPT H2O LLM Studio
🤗 Models"""
if kwargs['verbose']:
description = f"""Model {kwargs['base_model']} Instruct dataset.
For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
Command: {str(' '.join(sys.argv))}
Hash: {get_githash()}
"""
else:
description = more_info
description_bottom = "If this host is busy, try [LLaMa 65B](https://llama.h2o.ai), [Falcon 40B](https://gpt.h2o.ai), [Falcon 40B](http://falcon.h2o.ai), [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) or [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
"
description_bottom += """
By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md)
""" if is_hf: description_bottom += '''''' if kwargs['verbose']: task_info_md = f""" ### Task: {kwargs['task_info']}""" else: task_info_md = '' css_code = get_css(kwargs) if kwargs['gradio_offline_level'] >= 0: # avoid GoogleFont that pulls from internet if kwargs['gradio_offline_level'] == 1: # front end would still have to download fonts or have cached it at some point base_font = 'Source Sans Pro' else: base_font = 'Helvetica' theme_kwargs = dict(font=(base_font, 'ui-sans-serif', 'system-ui', 'sans-serif'), font_mono=('IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace')) else: theme_kwargs = dict() if kwargs['gradio_size'] == 'xsmall': theme_kwargs.update(dict(spacing_size=spacing_xsm, text_size=text_xsm, radius_size=radius_xsm)) elif kwargs['gradio_size'] == 'small': theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_sm, text_size=gr.themes.sizes.text_sm, radius_size=gr.themes.sizes.spacing_sm)) elif kwargs['gradio_size'] == 'large': theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_lg, text_size=gr.themes.sizes.text_lg), radius_size=gr.themes.sizes.spacing_lg) elif kwargs['gradio_size'] == 'medium': theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_md, text_size=gr.themes.sizes.text_md, radius_size=gr.themes.sizes.spacing_md)) theme = H2oTheme(**theme_kwargs) if kwargs['h2ocolors'] else SoftTheme(**theme_kwargs) demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False) callback = gr.CSVLogger() model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] if kwargs['base_model'].strip() not in model_options: model_options = [kwargs['base_model'].strip()] + model_options lora_options = kwargs['extra_lora_options'] if kwargs['lora_weights'].strip() not in lora_options: lora_options = [kwargs['lora_weights'].strip()] + lora_options server_options = kwargs['extra_server_options'] if kwargs['inference_server'].strip() not in server_options: server_options = [kwargs['inference_server'].strip()] + server_options if os.getenv('OPENAI_API_KEY'): if 'openai_chat' not in server_options: server_options += ['openai_chat'] if 'openai' not in server_options: server_options += ['openai'] # always add in no lora case # add fake space so doesn't go away in gradio dropdown model_options = [no_model_str] + model_options lora_options = [no_lora_str] + lora_options server_options = [no_server_str] + server_options # always add in no model case so can free memory # add fake space so doesn't go away in gradio dropdown # transcribe, will be detranscribed before use by evaluate() if not kwargs['base_model'].strip(): kwargs['base_model'] = no_model_str if not kwargs['lora_weights'].strip(): kwargs['lora_weights'] = no_lora_str if not kwargs['inference_server'].strip(): kwargs['inference_server'] = no_server_str # transcribe for gradio kwargs['gpu_id'] = str(kwargs['gpu_id']) no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]' output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get( 'base_model') else no_model_msg output_label0_model2 = no_model_msg def update_prompt(prompt_type1, prompt_dict1, model_state1, which_model=0): if not prompt_type1 or which_model != 0: # keep prompt_type and prompt_dict in sync if possible prompt_type1 = kwargs.get('prompt_type', prompt_type1) prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1) # prefer model specific prompt type instead of global one if not prompt_type1 or which_model != 0: prompt_type1 = model_state1.get('prompt_type', prompt_type1) prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1) if not prompt_dict1 or which_model != 0: # if still not defined, try to get prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1) if not prompt_dict1 or which_model != 0: prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1) return prompt_type1, prompt_dict1 default_kwargs = {k: kwargs[k] for k in eval_func_param_names_defaults} # ensure prompt_type consistent with prep_bot(), so nochat API works same way default_kwargs['prompt_type'], default_kwargs['prompt_dict'] = \ update_prompt(default_kwargs['prompt_type'], default_kwargs['prompt_dict'], model_state1=model_state0, which_model=0) for k in no_default_param_names: default_kwargs[k] = '' def dummy_fun(x): # need dummy function to block new input from being sent until output is done, # else gets input_list at time of submit that is old, and shows up as truncated in chatbot return x with demo: # avoid actual model/tokenizer here or anything that would be bad to deepcopy # https://github.com/gradio-app/gradio/issues/3558 model_state = gr.State( dict(model='model', tokenizer='tokenizer', device=kwargs['device'], base_model=kwargs['base_model'], tokenizer_base_model=kwargs['tokenizer_base_model'], lora_weights=kwargs['lora_weights'], inference_server=kwargs['inference_server'], prompt_type=kwargs['prompt_type'], prompt_dict=kwargs['prompt_dict'], ) ) model_state2 = gr.State(kwargs['model_state_none'].copy()) model_options_state = gr.State([model_options]) lora_options_state = gr.State([lora_options]) server_options_state = gr.State([server_options]) # uuid in db is used as user ID my_db_state = gr.State([None, str(uuid.uuid4())]) chat_state = gr.State({}) # make user default first and default choice, dedup docs_state00 = kwargs['document_choice'] + [x.name for x in list(DocumentChoices)] docs_state0 = [] [docs_state0.append(x) for x in docs_state00 if x not in docs_state0] docs_state = gr.State(docs_state0) # first is chosen as default gr.Markdown(f""" {get_h2o_title(title, description) if kwargs['h2ocolors'] else get_simple_title(title, description)} """) # go button visible if base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0'] go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") nas = ' '.join(['NA'] * len(kwargs['model_states'])) res_value = "Response Score: NA" if not kwargs[ 'model_lock'] else "Response Scores: %s" % nas normal_block = gr.Row(visible=not base_wanted) with normal_block: with gr.Tabs(): with gr.Row(): col_nochat = gr.Column(visible=not kwargs['chat']) with col_nochat: # FIXME: for model comparison, and check rest if kwargs['langchain_mode'] == 'Disabled': text_output_nochat = gr.Textbox(lines=5, label=output_label0, show_copy_button=True) else: # text looks a bit worse, but HTML links work text_output_nochat = gr.HTML(label=output_label0) instruction_nochat = gr.Textbox( lines=kwargs['input_lines'], label=instruction_label_nochat, placeholder=kwargs['placeholder_instruction'], ) iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction", placeholder=kwargs['placeholder_input']) submit_nochat = gr.Button("Submit") flag_btn_nochat = gr.Button("Flag") with gr.Column(visible=kwargs['score_model']): score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) col_chat = gr.Column(visible=kwargs['chat']) with col_chat: instruction, submit, stop_btn = make_prompt_form(kwargs) text_output, text_output2, text_outputs = make_chatbots(output_label0, output_label0_model2, **kwargs) with gr.Row(): clear = gr.Button("Save Chat / New Chat") flag_btn = gr.Button("Flag") with gr.Column(visible=kwargs['score_model']): score_text = gr.Textbox(res_value, show_label=False, visible=True) score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False and not kwargs['model_lock']) retry_btn = gr.Button("Regenerate") undo = gr.Button("Undo") submit_nochat_api = gr.Button("Submit nochat API", visible=False) inputs_dict_str = gr.Textbox(label='API input for nochat', show_label=False, visible=False) text_output_nochat_api = gr.Textbox(lines=5, label='API nochat output', visible=False, show_copy_button=True) with gr.TabItem("Documents"): langchain_readme = get_url('https://github.com/h2oai/h2ogpt/blob/main/docs/README_LangChain.md', from_str=True) gr.HTML(value=f"""LangChain Support DisabledRun:
python generate.py --langchain_mode=MyData
For more options see: {langchain_readme}""", visible=kwargs['langchain_mode'] == 'Disabled', interactive=False) data_row1 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled') with data_row1: if is_hf: # don't show 'wiki' since only usually useful for internal testing at moment no_show_modes = ['Disabled', 'wiki'] else: no_show_modes = ['Disabled'] allowed_modes = visible_langchain_modes.copy() allowed_modes = [x for x in allowed_modes if x in dbs] allowed_modes += ['ChatLLM', 'LLM'] if allow_upload_to_my_data and 'MyData' not in allowed_modes: allowed_modes += ['MyData'] if allow_upload_to_user_data and 'UserData' not in allowed_modes: allowed_modes += ['UserData'] langchain_mode = gr.Radio( [x for x in langchain_modes if x in allowed_modes and x not in no_show_modes], value=kwargs['langchain_mode'], label="Data Collection of Sources", visible=kwargs['langchain_mode'] != 'Disabled') allowed_actions = [x for x in langchain_actions if x in visible_langchain_actions] langchain_action = gr.Radio( allowed_actions, value=allowed_actions[0] if len(allowed_actions) > 0 else None, label="Data Action", visible=True) data_row2 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled') with data_row2: with gr.Column(scale=50): document_choice = gr.Dropdown(docs_state.value, label="Choose Subset of Doc(s) in Collection [click get sources to update]", value=docs_state.value[0], interactive=True, multiselect=True, ) with gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list): get_sources_btn = gr.Button(value="Get Sources", scale=0, size='sm') show_sources_btn = gr.Button(value="Show Sources", scale=0, size='sm') refresh_sources_btn = gr.Button(value="Refresh Sources", scale=0, size='sm') # import control if kwargs['langchain_mode'] != 'Disabled': from gpt_langchain import file_types, have_arxiv else: have_arxiv = False file_types = [] upload_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload, equal_height=False) with upload_row: with gr.Column(): file_types_str = '[' + ' '.join(file_types) + ']' fileup_output = gr.File(label=f'Upload {file_types_str}', file_types=file_types, file_count="multiple", elem_id="warning", elem_classes="feedback") with gr.Row(): add_to_shared_db_btn = gr.Button("Add File(s) to UserData", visible=allow_upload_to_user_data, elem_id='small_btn') add_to_my_db_btn = gr.Button("Add File(s) to Scratch MyData", visible=allow_upload_to_my_data and allow_upload_to_user_data, elem_id='small_btn' if allow_upload_to_user_data else None, size='sm' if not allow_upload_to_user_data else None) with gr.Column( visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_url_upload): url_label = 'URL (http/https) or ArXiv:' if have_arxiv else 'URL (http/https)' url_text = gr.Textbox(label=url_label, placeholder="Click Add to Submit" if allow_upload_to_my_data and allow_upload_to_user_data else "Enter to Submit", max_lines=1, interactive=True) with gr.Row(): url_user_btn = gr.Button(value='Add URL content to Shared UserData', visible=allow_upload_to_user_data and allow_upload_to_my_data, elem_id='small_btn') url_my_btn = gr.Button(value='Add URL content to Scratch MyData', visible=allow_upload_to_my_data and allow_upload_to_user_data, elem_id='small_btn' if allow_upload_to_user_data else None, size='sm' if not allow_upload_to_user_data else None) with gr.Column( visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_text_upload): user_text_text = gr.Textbox(label='Paste Text [Shift-Enter more lines]', placeholder="Click Add to Submit" if allow_upload_to_my_data and allow_upload_to_user_data else "Enter to Submit, Shift-Enter for more lines", interactive=True) with gr.Row(): user_text_user_btn = gr.Button(value='Add Text to Shared UserData', visible=allow_upload_to_user_data and allow_upload_to_my_data, elem_id='small_btn') user_text_my_btn = gr.Button(value='Add Text to Scratch MyData', visible=allow_upload_to_my_data and allow_upload_to_user_data, elem_id='small_btn' if allow_upload_to_user_data else None, size='sm' if not allow_upload_to_user_data else None) with gr.Column(visible=False): # WIP: with gr.Row(visible=False, equal_height=False): github_textbox = gr.Textbox(label="Github URL") with gr.Row(visible=True): github_shared_btn = gr.Button(value="Add Github to Shared UserData", visible=allow_upload_to_user_data, elem_id='small_btn') github_my_btn = gr.Button(value="Add Github to Scratch MyData", visible=allow_upload_to_my_data, elem_id='small_btn') sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list, equal_height=False) with sources_row: with gr.Column(scale=1): file_source = gr.File(interactive=False, label="Download File w/Sources [click get sources to make file]") with gr.Column(scale=2): sources_text = gr.HTML(label='Sources Added', interactive=False) with gr.TabItem("Chat History"): with gr.Row(): if 'mbart-' in kwargs['model_lower']: src_lang = gr.Dropdown(list(languages_covered().keys()), value=kwargs['src_lang'], label="Input Language") tgt_lang = gr.Dropdown(list(languages_covered().keys()), value=kwargs['tgt_lang'], label="Output Language") radio_chats = gr.Radio(value=None, label="Saved Chats", visible=True, interactive=True, type='value') with gr.Row(): clear_chat_btn = gr.Button(value="Clear Chat", visible=True, size='sm') export_chats_btn = gr.Button(value="Export Chats to Download", size='sm') remove_chat_btn = gr.Button(value="Remove Selected Chat", visible=True, size='sm') add_to_chats_btn = gr.Button("Import Chats from Upload", size='sm') with gr.Row(): chats_file = gr.File(interactive=False, label="Download Exported Chats") chatsup_output = gr.File(label="Upload Chat File(s)", file_types=['.json'], file_count='multiple', elem_id="warning", elem_classes="feedback") with gr.TabItem("Expert"): with gr.Row(): with gr.Column(): stream_output = gr.components.Checkbox(label="Stream output", value=kwargs['stream_output']) prompt_type = gr.Dropdown(prompt_types_strings, value=kwargs['prompt_type'], label="Prompt Type", visible=not kwargs['model_lock'], interactive=not is_public, ) prompt_type2 = gr.Dropdown(prompt_types_strings, value=kwargs['prompt_type'], label="Prompt Type Model 2", visible=False and not kwargs['model_lock'], interactive=not is_public) do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k", value=kwargs['do_sample']) temperature = gr.Slider(minimum=0.01, maximum=2, value=kwargs['temperature'], label="Temperature", info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") top_p = gr.Slider(minimum=1e-3, maximum=1.0 - 1e-3, value=kwargs['top_p'], label="Top p", info="Cumulative probability of tokens to sample from") top_k = gr.Slider( minimum=1, maximum=100, step=1, value=kwargs['top_k'], label="Top k", info='Num. tokens to sample from' ) # FIXME: https://github.com/h2oai/h2ogpt/issues/106 if os.getenv('TESTINGFAIL'): max_beams = 8 if not (memory_restriction_level or is_public) else 1 else: max_beams = 1 num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, value=min(max_beams, kwargs['num_beams']), label="Beams", info="Number of searches for optimal overall probability. " "Uses more GPU memory/compute", interactive=False) max_max_new_tokens = get_max_max_new_tokens(model_state0, **kwargs) max_new_tokens = gr.Slider( minimum=1, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", ) min_new_tokens = gr.Slider( minimum=0, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", ) max_new_tokens2 = gr.Slider( minimum=1, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length 2", visible=False and not kwargs['model_lock'], ) min_new_tokens2 = gr.Slider( minimum=0, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length 2", visible=False and not kwargs['model_lock'], ) early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", value=kwargs['early_stopping']) max_time = gr.Slider(minimum=0, maximum=kwargs['max_max_time'], step=1, value=min(kwargs['max_max_time'], kwargs['max_time']), label="Max. time", info="Max. time to search optimal output.") repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, value=kwargs['repetition_penalty'], label="Repetition Penalty") num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, value=kwargs['num_return_sequences'], label="Number Returns", info="Must be <= num_beams", interactive=not is_public) iinput = gr.Textbox(lines=4, label="Input", placeholder=kwargs['placeholder_input'], interactive=not is_public) context = gr.Textbox(lines=3, label="System Pre-Context", info="Directly pre-appended without prompt processing", interactive=not is_public) chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'], visible=not kwargs['model_lock'], interactive=not is_public, ) count_chat_tokens_btn = gr.Button(value="Count Chat Tokens", visible=not is_public and not kwargs['model_lock'], interactive=not is_public) chat_token_count = gr.Textbox(label="Chat Token Count", value=None, visible=not is_public and not kwargs['model_lock'], interactive=False) chunk = gr.components.Checkbox(value=kwargs['chunk'], label="Whether to chunk documents", info="For LangChain", visible=kwargs['langchain_mode'] != 'Disabled', interactive=not is_public) min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public) top_k_docs = gr.Slider(minimum=min_top_k_docs, maximum=max_top_k_docs, step=1, value=kwargs['top_k_docs'], label=label_top_k_docs, info="For LangChain", visible=kwargs['langchain_mode'] != 'Disabled', interactive=not is_public) chunk_size = gr.Number(value=kwargs['chunk_size'], label="Chunk size for document chunking", info="For LangChain (ignored if chunk=False)", minimum=128, maximum=2048, visible=kwargs['langchain_mode'] != 'Disabled', interactive=not is_public, precision=0) with gr.TabItem("Models"): model_lock_msg = gr.Textbox(lines=1, label="Model Lock Notice", placeholder="Started in model_lock mode, no model changes allowed.", visible=bool(kwargs['model_lock']), interactive=False) load_msg = "Load-Unload Model/LORA [unload works if did not use --base_model]" if not is_public \ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO" load_msg2 = "Load-Unload Model/LORA 2 [unload works if did not use --base_model]" if not is_public \ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2" variant_load_msg = 'primary' if not is_public else 'secondary' compare_checkbox = gr.components.Checkbox(label="Compare Mode", value=kwargs['model_lock'], visible=not is_public and not kwargs['model_lock']) with gr.Row(): n_gpus_list = [str(x) for x in list(range(-1, n_gpus))] with gr.Column(): with gr.Row(): with gr.Column(scale=20, visible=not kwargs['model_lock']): model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", value=kwargs['base_model']) lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora']) server_choice = gr.Dropdown(server_options_state.value[0], label="Choose Server", value=kwargs['inference_server'], visible=not is_public) with gr.Column(scale=1, visible=not kwargs['model_lock']): load_model_button = gr.Button(load_msg, variant=variant_load_msg, scale=0, size='sm', interactive=not is_public) model_load8bit_checkbox = gr.components.Checkbox( label="Load 8-bit [requires support]", value=kwargs['load_8bit'], interactive=not is_public) model_infer_devices_checkbox = gr.components.Checkbox( label="Choose Devices [If not Checked, use all GPUs]", value=kwargs['infer_devices'], interactive=not is_public) model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs, if Choose is enabled]", value=kwargs['gpu_id'], interactive=not is_public) model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'], interactive=False) lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora'], interactive=False) server_used = gr.Textbox(label="Current Server", value=kwargs['inference_server'], visible=bool(kwargs['inference_server']) and not is_public, interactive=False) prompt_dict = gr.Textbox(label="Prompt (or Custom)", value=pprint.pformat(kwargs['prompt_dict'], indent=4), interactive=not is_public, lines=4) col_model2 = gr.Column(visible=False) with col_model2: with gr.Row(): with gr.Column(scale=20, visible=not kwargs['model_lock']): model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2", value=no_model_str) lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2", value=no_lora_str, visible=kwargs['show_lora']) server_choice2 = gr.Dropdown(server_options_state.value[0], label="Choose Server 2", value=no_server_str, visible=not is_public) with gr.Column(scale=1, visible=not kwargs['model_lock']): load_model_button2 = gr.Button(load_msg2, variant=variant_load_msg, scale=0, size='sm', interactive=not is_public) model_load8bit_checkbox2 = gr.components.Checkbox( label="Load 8-bit 2 [requires support]", value=kwargs['load_8bit'], interactive=not is_public) model_infer_devices_checkbox2 = gr.components.Checkbox( label="Choose Devices 2 [If not Checked, use all GPUs]", value=kwargs[ 'infer_devices'], interactive=not is_public) model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID 2 [-1 = all GPUs, if choose is enabled]", value=kwargs['gpu_id'], interactive=not is_public) # no model/lora loaded ever in model2 by default model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str, interactive=False) lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str, visible=kwargs['show_lora'], interactive=False) server_used2 = gr.Textbox(label="Current Server 2", value=no_server_str, interactive=False, visible=not is_public) prompt_dict2 = gr.Textbox(label="Prompt (or Custom) 2", value=pprint.pformat(kwargs['prompt_dict'], indent=4), interactive=not is_public, lines=4) with gr.Row(visible=not kwargs['model_lock']): with gr.Column(scale=50): new_model = gr.Textbox(label="New Model name/path", interactive=not is_public) with gr.Column(scale=50): new_lora = gr.Textbox(label="New LORA name/path", visible=kwargs['show_lora'], interactive=not is_public) with gr.Column(scale=50): new_server = gr.Textbox(label="New Server url:port", interactive=not is_public) with gr.Row(): add_model_lora_server_button = gr.Button("Add new Model, Lora, Server url:port", scale=0, size='sm', interactive=not is_public) with gr.TabItem("System"): admin_row = gr.Row() with admin_row: admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public) admin_btn = gr.Button(value="Admin Access", visible=is_public) system_row = gr.Row(visible=not is_public) with system_row: with gr.Column(): with gr.Row(): system_btn = gr.Button(value='Get System Info') system_text = gr.Textbox(label='System Info', interactive=False, show_copy_button=True) with gr.Row(): system_input = gr.Textbox(label='System Info Dict Password', interactive=True, visible=not is_public) system_btn2 = gr.Button(value='Get System Info Dict', visible=not is_public) system_text2 = gr.Textbox(label='System Info Dict', interactive=False, visible=not is_public, show_copy_button=True) with gr.Row(): system_btn3 = gr.Button(value='Get Hash', visible=not is_public) system_text3 = gr.Textbox(label='Hash', interactive=False, visible=not is_public, show_copy_button=True) with gr.Row(): zip_btn = gr.Button("Zip") zip_text = gr.Textbox(label="Zip file name", interactive=False) file_output = gr.File(interactive=False, label="Zip file to Download") with gr.Row(): s3up_btn = gr.Button("S3UP") s3up_text = gr.Textbox(label='S3UP result', interactive=False) with gr.TabItem("Disclaimers"): description = "" description += """
DISCLAIMERS:
etc. added in chat, try to remove some of that to help avoid dup entries when hit new conversation is_same = True # length of conversation has to be same if len(x) != len(y): return False if len(x) != len(y): return False for stepx, stepy in zip(x, y): if len(stepx) != len(stepy): # something off with a conversation return False for stepxx, stepyy in zip(stepx, stepy): if len(stepxx) != len(stepyy): # something off with a conversation return False if len(stepxx) != 2: # something off return False if len(stepyy) != 2: # something off return False questionx = stepxx[0].replace('
', '').replace('
', '') if stepxx[0] is not None else None answerx = stepxx[1].replace('', '').replace('
', '') if stepxx[1] is not None else None questiony = stepyy[0].replace('', '').replace('
', '') if stepyy[0] is not None else None answery = stepyy[1].replace('', '').replace('
', '') if stepyy[1] is not None else None if questionx != questiony or answerx != answery: return False return is_same def save_chat(*args): args_list = list(args) chat_list = args_list[:-1] # list of chatbot histories # remove None histories chat_list_not_none = [x for x in chat_list if x and len(x) > 0 and len(x[0]) == 2 and x[0][1] is not None] chat_state1 = args_list[ -1] # dict with keys of short chat names, values of list of list of chatbot histories short_chats = list(chat_state1.keys()) if len(chat_list_not_none) > 0: # make short_chat key from only first history, based upon question that is same anyways chat_first = chat_list_not_none[0] short_chat = get_short_chat(chat_first, short_chats) if short_chat: old_chat_lists = list(chat_state1.values()) already_exists = any([is_chat_same(chat_list, x) for x in old_chat_lists]) if not already_exists: chat_state1[short_chat] = chat_list.copy() # clear chat_list so saved and then new conversation starts chat_list = [[]] * len(chat_list) ret_list = chat_list + [chat_state1] return tuple(ret_list) def update_radio_chats(chat_state1): return gr.update(choices=list(chat_state1.keys()), value=None) def switch_chat(chat_key, chat_state1, num_model_lock=0): chosen_chat = chat_state1[chat_key] # deal with possible different size of chat list vs. current list ret_chat = [None] * (2 + num_model_lock) for chati in range(0, 2 + num_model_lock): ret_chat[chati % len(ret_chat)] = chosen_chat[chati % len(chosen_chat)] return tuple(ret_chat) def clear_texts(*args): return tuple([gr.Textbox.update(value='')] * len(args)) def clear_scores(): return gr.Textbox.update(value=res_value), \ gr.Textbox.update(value='Response Score: NA'), \ gr.Textbox.update(value='Response Score: NA') switch_chat_fun = functools.partial(switch_chat, num_model_lock=len(text_outputs)) radio_chats.input(switch_chat_fun, inputs=[radio_chats, chat_state], outputs=[text_output, text_output2] + text_outputs) \ .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) def remove_chat(chat_key, chat_state1): chat_state1.pop(chat_key, None) return chat_state1 remove_chat_btn.click(remove_chat, inputs=[radio_chats, chat_state], outputs=chat_state) \ .then(update_radio_chats, inputs=chat_state, outputs=radio_chats) def get_chats1(chat_state1): base = 'chats' makedirs(base, exist_ok=True) filename = os.path.join(base, 'chats_%s.json' % str(uuid.uuid4())) with open(filename, "wt") as f: f.write(json.dumps(chat_state1, indent=2)) return filename export_chats_btn.click(get_chats1, inputs=chat_state, outputs=chats_file, queue=False, api_name='export_chats' if allow_api else None) def add_chats_from_file(file, chat_state1, add_btn): if not file: return chat_state1, add_btn if isinstance(file, str): files = [file] else: files = file if not files: return chat_state1, add_btn for file1 in files: try: if hasattr(file1, 'name'): file1 = file1.name with open(file1, "rt") as f: new_chats = json.loads(f.read()) for chat1_k, chat1_v in new_chats.items(): # ignore chat1_k, regenerate and de-dup to avoid loss _, chat_state1 = save_chat(chat1_v, chat_state1) except BaseException as e: t, v, tb = sys.exc_info() ex = ''.join(traceback.format_exception(t, v, tb)) print("Add chats exception: %s" % str(ex), flush=True) return chat_state1, add_btn # note for update_user_db_func output is ignored for db add_to_chats_btn.click(add_chats_from_file, inputs=[chatsup_output, chat_state, add_to_chats_btn], outputs=[chat_state, add_to_my_db_btn], queue=False, api_name='add_to_chats' if allow_api else None) \ .then(clear_file_list, outputs=chatsup_output, queue=False) \ .then(update_radio_chats, inputs=chat_state, outputs=radio_chats, queue=False) clear_chat_btn.click(fn=clear_texts, inputs=[text_output, text_output2] + text_outputs, outputs=[text_output, text_output2] + text_outputs, queue=False, api_name='clear' if allow_api else None) \ .then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) \ .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) # does both models clear.click(save_chat, inputs=[text_output, text_output2] + text_outputs + [chat_state], outputs=[text_output, text_output2] + text_outputs + [chat_state], api_name='save_chat' if allow_api else None) \ .then(update_radio_chats, inputs=chat_state, outputs=radio_chats, api_name='update_chats' if allow_api else None) \ .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) # NOTE: clear of instruction/iinput for nochat has to come after score, # because score for nochat consumes actual textbox, while chat consumes chat history filled by user() no_chat_args = dict(fn=fun, inputs=[model_state, my_db_state] + inputs_list, outputs=text_output_nochat, queue=queue, ) submit_event_nochat = submit_nochat.click(**no_chat_args, api_name='submit_nochat' if allow_api else None) \ .then(clear_torch_cache) \ .then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \ .then(clear_instruct, None, instruction_nochat) \ .then(clear_instruct, None, iinput_nochat) \ .then(clear_torch_cache) # copy of above with text box submission submit_event_nochat2 = instruction_nochat.submit(**no_chat_args) \ .then(clear_torch_cache) \ .then(**score_args_nochat, queue=queue) \ .then(clear_instruct, None, instruction_nochat) \ .then(clear_instruct, None, iinput_nochat) \ .then(clear_torch_cache) submit_event_nochat_api = submit_nochat_api.click(fun_with_dict_str, inputs=[model_state, my_db_state, inputs_dict_str], outputs=text_output_nochat_api, queue=True, # required for generator api_name='submit_nochat_api' if allow_api else None) \ .then(clear_torch_cache) def load_model(model_name, lora_weights, server_name, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id): # ensure no API calls reach here if is_public: raise RuntimeError("Illegal access for %s" % model_name) # ensure old model removed from GPU memory if kwargs['debug']: print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True) model0 = model_state0['model'] if isinstance(model_state_old['model'], str) and model0 is not None: # best can do, move model loaded at first to CPU model0.cpu() if model_state_old['model'] is not None and not isinstance(model_state_old['model'], str): try: model_state_old['model'].cpu() except Exception as e: # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! print("Unable to put model on CPU: %s" % str(e), flush=True) del model_state_old['model'] model_state_old['model'] = None if model_state_old['tokenizer'] is not None and not isinstance(model_state_old['tokenizer'], str): del model_state_old['tokenizer'] model_state_old['tokenizer'] = None clear_torch_cache() if kwargs['debug']: print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True) if model_name is None or model_name == no_model_str: # no-op if no model, just free memory # no detranscribe needed for model, never go into evaluate lora_weights = no_lora_str server_name = no_server_str return [None, None, None, model_name, server_name], \ model_name, lora_weights, server_name, prompt_type_old, \ gr.Slider.update(maximum=256), \ gr.Slider.update(maximum=256) # don't deepcopy, can contain model itself all_kwargs1 = all_kwargs.copy() all_kwargs1['base_model'] = model_name.strip() all_kwargs1['load_8bit'] = load_8bit all_kwargs1['infer_devices'] = infer_devices all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe model_lower = model_name.strip().lower() if model_lower in inv_prompt_type_to_model_lower: prompt_type1 = inv_prompt_type_to_model_lower[model_lower] else: prompt_type1 = prompt_type_old # detranscribe if lora_weights == no_lora_str: lora_weights = '' all_kwargs1['lora_weights'] = lora_weights.strip() if server_name == no_server_str: server_name = '' all_kwargs1['inference_server'] = server_name.strip() model1, tokenizer1, device1 = get_model(reward_type=False, **get_kwargs(get_model, exclude_names=['reward_type'], **all_kwargs1)) clear_torch_cache() tokenizer_base_model = model_name prompt_dict1, error0 = get_prompt(prompt_type1, '', chat=False, context='', reduced=False, making_context=False, return_dict=True) model_state_new = dict(model=model1, tokenizer=tokenizer1, device=device1, base_model=model_name, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights, inference_server=server_name, prompt_type=prompt_type1, prompt_dict=prompt_dict1, ) max_max_new_tokens1 = get_max_max_new_tokens(model_state_new, **kwargs) if kwargs['debug']: print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True) return model_state_new, model_name, lora_weights, server_name, prompt_type1, \ gr.Slider.update(maximum=max_max_new_tokens1), \ gr.Slider.update(maximum=max_max_new_tokens1) def get_prompt_str(prompt_type1, prompt_dict1, which=0): if prompt_type1 in ['', None]: print("Got prompt_type %s: %s" % (which, prompt_type1), flush=True) return str({}) prompt_dict1, prompt_dict_error = get_prompt(prompt_type1, prompt_dict1, chat=False, context='', reduced=False, making_context=False, return_dict=True) if prompt_dict_error: return str(prompt_dict_error) else: # return so user can manipulate if want and use as custom return str(prompt_dict1) get_prompt_str_func1 = functools.partial(get_prompt_str, which=1) get_prompt_str_func2 = functools.partial(get_prompt_str, which=2) prompt_type.change(fn=get_prompt_str_func1, inputs=[prompt_type, prompt_dict], outputs=prompt_dict) prompt_type2.change(fn=get_prompt_str_func2, inputs=[prompt_type2, prompt_dict2], outputs=prompt_dict2) def dropdown_prompt_type_list(x): return gr.Dropdown.update(value=x) def chatbot_list(x, model_used_in): return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') load_model_args = dict(fn=load_model, inputs=[model_choice, lora_choice, server_choice, model_state, prompt_type, model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu], outputs=[model_state, model_used, lora_used, server_used, # if prompt_type changes, prompt_dict will change via change rule prompt_type, max_new_tokens, min_new_tokens, ]) prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat) if not is_public: load_model_event = load_model_button.click(**load_model_args, api_name='load_model' if allow_api else None) \ .then(**prompt_update_args) \ .then(**chatbot_update_args) \ .then(**nochat_update_args) \ .then(clear_torch_cache) load_model_args2 = dict(fn=load_model, inputs=[model_choice2, lora_choice2, server_choice2, model_state2, prompt_type2, model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2], outputs=[model_state2, model_used2, lora_used2, server_used2, # if prompt_type2 changes, prompt_dict2 will change via change rule prompt_type2, max_new_tokens2, min_new_tokens2 ]) prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) if not is_public: load_model_event2 = load_model_button2.click(**load_model_args2, api_name='load_model2' if allow_api else None) \ .then(**prompt_update_args2) \ .then(**chatbot_update_args2) \ .then(clear_torch_cache) def dropdown_model_lora_server_list(model_list0, model_x, lora_list0, lora_x, server_list0, server_x, model_used1, lora_used1, server_used1, model_used2, lora_used2, server_used2, ): model_new_state = [model_list0[0] + [model_x]] model_new_options = [*model_new_state[0]] x1 = model_x if model_used1 == no_model_str else model_used1 x2 = model_x if model_used2 == no_model_str else model_used2 ret1 = [gr.Dropdown.update(value=x1, choices=model_new_options), gr.Dropdown.update(value=x2, choices=model_new_options), '', model_new_state] lora_new_state = [lora_list0[0] + [lora_x]] lora_new_options = [*lora_new_state[0]] # don't switch drop-down to added lora if already have model loaded x1 = lora_x if model_used1 == no_model_str else lora_used1 x2 = lora_x if model_used2 == no_model_str else lora_used2 ret2 = [gr.Dropdown.update(value=x1, choices=lora_new_options), gr.Dropdown.update(value=x2, choices=lora_new_options), '', lora_new_state] server_new_state = [server_list0[0] + [server_x]] server_new_options = [*server_new_state[0]] # don't switch drop-down to added server if already have model loaded x1 = server_x if model_used1 == no_model_str else server_used1 x2 = server_x if model_used2 == no_model_str else server_used2 ret3 = [gr.Dropdown.update(value=x1, choices=server_new_options), gr.Dropdown.update(value=x2, choices=server_new_options), '', server_new_state] return tuple(ret1 + ret2 + ret3) add_model_lora_server_event = \ add_model_lora_server_button.click(fn=dropdown_model_lora_server_list, inputs=[model_options_state, new_model] + [lora_options_state, new_lora] + [server_options_state, new_server] + [model_used, lora_used, server_used] + [model_used2, lora_used2, server_used2], outputs=[model_choice, model_choice2, new_model, model_options_state] + [lora_choice, lora_choice2, new_lora, lora_options_state] + [server_choice, server_choice2, new_server, server_options_state], queue=False) go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, queue=False) \ .then(lambda: gr.update(visible=True), None, normal_block, queue=False) \ .then(**load_model_args, queue=False).then(**prompt_update_args, queue=False) def compare_textbox_fun(x): return gr.Textbox.update(visible=x) def compare_column_fun(x): return gr.Column.update(visible=x) def compare_prompt_fun(x): return gr.Dropdown.update(visible=x) def slider_fun(x): return gr.Slider.update(visible=x) compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox" if allow_api else None) \ .then(compare_column_fun, compare_checkbox, col_model2) \ .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ .then(compare_textbox_fun, compare_checkbox, score_text2) \ .then(slider_fun, compare_checkbox, max_new_tokens2) \ .then(slider_fun, compare_checkbox, min_new_tokens2) # FIXME: add score_res2 in condition, but do better # callback for logging flagged input/output callback.setup(inputs_list + [text_output, text_output2] + text_outputs, "flagged_data_points") flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2] + text_outputs, None, preprocess=False, api_name='flag' if allow_api else None, queue=False) flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None, preprocess=False, api_name='flag_nochat' if allow_api else None, queue=False) def get_system_info(): if is_public: time.sleep(10) # delay to avoid spam since queue=False return gr.Textbox.update(value=system_info_print()) system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info' if allow_api else None, queue=False) def get_system_info_dict(system_input1, **kwargs1): if system_input1 != os.getenv("ADMIN_PASS", ""): return json.dumps({}) exclude_list = ['admin_pass', 'examples'] sys_dict = {k: v for k, v in kwargs1.items() if isinstance(v, (str, int, bool, float)) and k not in exclude_list} try: sys_dict.update(system_info()) except Exception as e: # protection print("Exception: %s" % str(e), flush=True) return json.dumps(sys_dict) get_system_info_dict_func = functools.partial(get_system_info_dict, **all_kwargs) system_dict_event = system_btn2.click(get_system_info_dict_func, inputs=system_input, outputs=system_text2, api_name='system_info_dict' if allow_api else None, queue=False, # queue to avoid spam ) def get_hash(): return kwargs['git_hash'] system_btn3.click(get_hash, outputs=system_text3, api_name='system_hash' if allow_api else None, queue=False, ) # don't pass text_output, don't want to clear output, just stop it # cancel only stops outer generation, not inner generation or non-generation stop_btn.click(lambda: None, None, None, cancels=submits1 + submits2 + submits3 + submits4 + [submit_event_nochat, submit_event_nochat2] + [eventdb1, eventdb2, eventdb3, eventdb4, eventdb5, eventdb6] + [eventdb7, eventdb8, eventdb9] , queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False) def count_chat_tokens(model_state1, chat1, prompt_type1, prompt_dict1, memory_restriction_level1=0, keep_sources_in_context1=False, ): if model_state1 and not isinstance(model_state1['tokenizer'], str): tokenizer = model_state1['tokenizer'] elif model_state0 and not isinstance(model_state0['tokenizer'], str): tokenizer = model_state0['tokenizer'] else: tokenizer = None if tokenizer is not None: langchain_mode1 = 'ChatLLM' # fake user message to mimic bot() chat1 = copy.deepcopy(chat1) chat1 = chat1 + [['user_message1', None]] model_max_length1 = tokenizer.model_max_length context1 = history_to_context(chat1, langchain_mode1, prompt_type1, prompt_dict1, chat1, model_max_length1, memory_restriction_level1, keep_sources_in_context1) return str(tokenizer(context1, return_tensors="pt")['input_ids'].shape[1]) else: return "N/A" count_chat_tokens_func = functools.partial(count_chat_tokens, memory_restriction_level1=memory_restriction_level, keep_sources_in_context1=kwargs['keep_sources_in_context']) count_chat_tokens_btn.click(fn=count_chat_tokens, inputs=[model_state, text_output, prompt_type, prompt_dict], outputs=chat_token_count, api_name='count_tokens' if allow_api else None) demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] and False else None) # light best demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open']) favicon_path = "h2o-logo.svg" if not os.path.isfile(favicon_path): print("favicon_path=%s not found" % favicon_path, flush=True) favicon_path = None scheduler = BackgroundScheduler() scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20) if is_public and \ kwargs['base_model'] not in non_hf_types: # FIXME: disable for gptj, langchain or gpt4all modify print itself # FIXME: and any multi-threaded/async print will enter model output! scheduler.add_job(func=ping, trigger="interval", seconds=60) scheduler.add_job(func=ping_gpu, trigger="interval", seconds=60 * 10) scheduler.start() # import control if kwargs['langchain_mode'] == 'Disabled' and \ os.environ.get("TEST_LANGCHAIN_IMPORT") and \ kwargs['base_model'] not in non_hf_types: assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have" assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have" demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, favicon_path=favicon_path, prevent_thread_lock=True, auth=kwargs['auth']) if kwargs['verbose']: print("Started GUI", flush=True) if kwargs['block_gradio_exit']: demo.block_thread() input_args_list = ['model_state', 'my_db_state'] def get_inputs_list(inputs_dict, model_lower, model_id=1): """ map gradio objects in locals() to inputs for evaluate(). :param inputs_dict: :param model_lower: :param model_id: Which model (1 or 2) of 2 :return: """ inputs_list_names = list(inspect.signature(evaluate).parameters) inputs_list = [] inputs_dict_out = {} for k in inputs_list_names: if k == 'kwargs': continue if k in input_args_list + inputs_kwargs_list: # these are added at use time for args or partial for kwargs, not taken as input continue if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: continue if model_id == 2: if k == 'prompt_type': k = 'prompt_type2' if k == 'prompt_used': k = 'prompt_used2' if k == 'max_new_tokens': k = 'max_new_tokens2' if k == 'min_new_tokens': k = 'min_new_tokens2' inputs_list.append(inputs_dict[k]) inputs_dict_out[k] = inputs_dict[k] return inputs_list, inputs_dict_out def get_sources(db1, langchain_mode, dbs=None, docs_state0=None): if langchain_mode in ['ChatLLM', 'LLM']: source_files_added = "NA" source_list = [] elif langchain_mode in ['wiki_full']: source_files_added = "Not showing wiki_full, takes about 20 seconds and makes 4MB file." \ " Ask jon.mckinney@h2o.ai for file if required." source_list = [] elif langchain_mode == 'MyData' and len(db1) > 0 and db1[0] is not None: from gpt_langchain import get_metadatas metadatas = get_metadatas(db1[0]) source_list = sorted(set([x['source'] for x in metadatas])) source_files_added = '\n'.join(source_list) elif langchain_mode in dbs and dbs[langchain_mode] is not None: from gpt_langchain import get_metadatas db1 = dbs[langchain_mode] metadatas = get_metadatas(db1) source_list = sorted(set([x['source'] for x in metadatas])) source_files_added = '\n'.join(source_list) else: source_list = [] source_files_added = "None" sources_dir = "sources_dir" makedirs(sources_dir) sources_file = os.path.join(sources_dir, 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4()))) with open(sources_file, "wt") as f: f.write(source_files_added) source_list = docs_state0 + source_list return sources_file, source_list def update_user_db(file, db1, x, y, *args, dbs=None, langchain_mode='UserData', **kwargs): try: return _update_user_db(file, db1, x, y, *args, dbs=dbs, langchain_mode=langchain_mode, **kwargs) except BaseException as e: print(traceback.format_exc(), flush=True) # gradio has issues if except, so fail semi-gracefully, else would hang forever in processing textbox ex_str = "Exception: %s" % str(e) source_files_added = """\
Sources:
{0}
{0}
Exceptions: