import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("dreamlike-art/dreamlike-photoreal-2.0", torch_dtype=torch.float16, safety_checker=None)
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, safety_checker=None)
upscaler = upscaler.to(device)
pipe = pipe.to(device)
def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale):
generator = torch.Generator(device=device).manual_seed(seed)
if upscale == "Yes":
low_res_latents = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator, output_type="latent").images
image = upscaler(Prompt, negative_prompt=negative_prompt, image=low_res_latents, num_inference_steps=5, guidance_scale=0, generator=generator).images[0]
else:
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0]
return image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1024, 768, step=128, label='Height'),
gr.Slider(512, 1024, 768, step=128, label='Width'),
gr.Slider(1, maximum=15, value=10, step=.25),
gr.Slider(25, maximum=100, value=50, step=25),
gr.Slider(minimum=1, step=1, maximum=9999999999999999, randomize=True),
gr.Radio(["Yes", "No"], label='Upscale?'),
],
outputs=gr.Image(label='Generated Image'),
title="PhotoReal V2 with SD x2 Upscaler - GPU",
description="
Warning: This Demo is capable of producing NSFW content.",
article = "Code Monkey: Manjushri").launch(debug=True, max_threads=True)