# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict from ...extras.packages import is_gradio_available from ..common import DEFAULT_DATA_DIR, list_datasets from .data import create_preview_box if is_gradio_available(): import gradio as gr if TYPE_CHECKING: from gradio.components import Component from ..engine import Engine def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]: input_elems = engine.manager.get_base_elems() elem_dict = dict() with gr.Row(): dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2) dataset = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=4) preview_elems = create_preview_box(dataset_dir, dataset) input_elems.update({dataset_dir, dataset}) elem_dict.update(dict(dataset_dir=dataset_dir, dataset=dataset, **preview_elems)) with gr.Row(): cutoff_len = gr.Slider(minimum=4, maximum=65536, value=1024, step=1) max_samples = gr.Textbox(value="100000") batch_size = gr.Slider(minimum=1, maximum=1024, value=2, step=1) predict = gr.Checkbox(value=True) input_elems.update({cutoff_len, max_samples, batch_size, predict}) elem_dict.update(dict(cutoff_len=cutoff_len, max_samples=max_samples, batch_size=batch_size, predict=predict)) with gr.Row(): max_new_tokens = gr.Slider(minimum=8, maximum=4096, value=512, step=1) top_p = gr.Slider(minimum=0.01, maximum=1, value=0.7, step=0.01) temperature = gr.Slider(minimum=0.01, maximum=1.5, value=0.95, step=0.01) output_dir = gr.Textbox() input_elems.update({max_new_tokens, top_p, temperature, output_dir}) elem_dict.update(dict(max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, output_dir=output_dir)) with gr.Row(): cmd_preview_btn = gr.Button() start_btn = gr.Button(variant="primary") stop_btn = gr.Button(variant="stop") with gr.Row(): resume_btn = gr.Checkbox(visible=False, interactive=False) progress_bar = gr.Slider(visible=False, interactive=False) with gr.Row(): output_box = gr.Markdown() elem_dict.update( dict( cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, resume_btn=resume_btn, progress_bar=progress_bar, output_box=output_box, ) ) output_elems = [output_box, progress_bar] cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems, concurrency_limit=None) start_btn.click(engine.runner.run_eval, input_elems, output_elems) stop_btn.click(engine.runner.set_abort) resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None) dataset.focus(list_datasets, [dataset_dir], [dataset], queue=False) return elem_dict