#!/usr/bin/env python3 """ Audio-visual Speech Separation Gradio App - Hugging Face Space Version Automatically detects and separates all speakers in videos """ import warnings warnings.filterwarnings("ignore") import os import gradio as gr import numpy as np import shutil import tempfile import time import sys import threading from PIL import Image, ImageDraw, ImageFont from moviepy import * import spaces from face_detection_utils import detect_faces # Use HF Space's temp directory TEMP_DIR = os.environ.get('TMPDIR', '/tmp') # Shared state for relaying GPU-side status back to the UI thread. GPU_PROGRESS_STATE = {"progress": 0.0, "status": "Processing on GPU..."} GPU_PROGRESS_LOCK = threading.Lock() class LogCollector: """Collect logs in a list""" def __init__(self): self.logs = [] def add(self, message): if message and message.strip(): timestamp = time.strftime("%H:%M:%S") self.logs.append(f"[{timestamp}] {message.strip()}") def get_text(self, last_n=None): if last_n: return "\n".join(self.logs[-last_n:]) return "\n".join(self.logs) # Global log collector for capturing print statements GLOBAL_LOG = LogCollector() class StdoutCapture: """Capture stdout and add to log""" def __init__(self, original): self.original = original def write(self, text): self.original.write(text) if text.strip(): GLOBAL_LOG.add(text.strip()) def flush(self): self.original.flush() def remove_duplicate_faces(boxes, probs, iou_threshold=0.5): """Remove duplicate face detections using IoU (Intersection over Union)""" if len(boxes) <= 1: return boxes, probs # Calculate IoU between all pairs of boxes def calculate_iou(box1, box2): x1 = max(box1[0], box2[0]) y1 = max(box1[1], box2[1]) x2 = min(box1[2], box2[2]) y2 = min(box1[3], box2[3]) intersection = max(0, x2 - x1) * max(0, y2 - y1) area1 = (box1[2] - box1[0]) * (box1[3] - box1[1]) area2 = (box2[2] - box2[0]) * (box2[3] - box2[1]) union = area1 + area2 - intersection return intersection / union if union > 0 else 0 # Keep track of which boxes to keep keep = [] used = set() # Sort by confidence (if available) or by area if probs is not None: sorted_indices = np.argsort(probs)[::-1] else: areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) sorted_indices = np.argsort(areas)[::-1] for i in sorted_indices: if i in used: continue keep.append(i) used.add(i) # Mark overlapping boxes as used for j in range(len(boxes)): if j != i and j not in used: iou = calculate_iou(boxes[i], boxes[j]) if iou > iou_threshold: used.add(j) # Return filtered boxes and probs keep = sorted(keep) # Maintain original order filtered_boxes = boxes[keep] filtered_probs = probs[keep] if probs is not None else None return filtered_boxes, filtered_probs def process_detected_faces(boxes, probs, frame_rgb, frame_pil): """Process detected faces and return face images""" face_images = [] full_frame_annotated = frame_rgb.copy() if boxes is None or len(boxes) == 0: return [], 0, full_frame_annotated, "No faces detected" boxes = np.asarray(boxes, dtype=np.float32) # Filter by confidence if available if probs is not None: # Keep faces with confidence > 0.9 confident_indices = probs > 0.9 boxes = boxes[confident_indices] probs = probs[confident_indices] print(f"After filtering by confidence: {len(boxes)} faces") if len(boxes) == 0: return [], 0, full_frame_annotated, "No faces passed the confidence filter" # Remove duplicate detections boxes, probs = remove_duplicate_faces(boxes, probs, iou_threshold=0.3) print(f"After removing duplicates: {len(boxes)} faces") if len(boxes) == 0: return [], 0, full_frame_annotated, "No faces remained after duplicate removal" # Sort boxes by area (larger faces first) areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) sorted_indices = np.argsort(areas)[::-1] boxes = boxes[sorted_indices] # Annotate full frame full_frame_pil = Image.fromarray(full_frame_annotated) draw = ImageDraw.Draw(full_frame_pil) # Try to use a better font try: font = ImageFont.load_default() except: font = None # Extract face images and annotate colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)] for i, box in enumerate(boxes): color = colors[i % len(colors)] # Draw bounding box draw.rectangle(box.tolist(), outline=color, width=4) label = f"Speaker {i+1}" # Draw label if font: draw.text((box[0] + 5, box[1] - 20), label, fill=color, font=font) # Extract face with margin margin = 50 x1 = max(0, int(box[0] - margin)) y1 = max(0, int(box[1] - margin)) x2 = min(frame_rgb.shape[1], int(box[2] + margin)) y2 = min(frame_rgb.shape[0], int(box[3] + margin)) face_crop = frame_rgb[y1:y2, x1:x2] # Resize maintaining aspect ratio face_crop = Image.fromarray(face_crop) face_crop.thumbnail((250, 250), Image.Resampling.LANCZOS) face_crop = np.array(face_crop) face_images.append(face_crop) full_frame_annotated = np.array(full_frame_pil) return face_images, len(boxes), full_frame_annotated, None @spaces.GPU(duration=60, enable_queue=True) def detect_faces_gpu(frame_pil): """GPU-accelerated face detection""" print("Detecting faces with RetinaFace") frame_array = np.array(frame_pil) boxes, probs = detect_faces( frame_array, threshold=0.9, allow_upscaling=False, ) if boxes is None or len(boxes) == 0: print("No faces detected at high threshold, relaxing criteria...") boxes, probs = detect_faces( frame_array, threshold=0.7, allow_upscaling=True, ) return boxes, probs def detect_and_extract_all_faces(video_path): """Detect all faces in the first frame and extract them""" print("Starting face detection...") # Check if video file exists if not os.path.exists(video_path): print(f"Error: Video file does not exist at path: {video_path}") return [], 0, None, f"Video file not found: {video_path}" print(f"Video path: {video_path}") print(f"File size: {os.path.getsize(video_path) / 1024 / 1024:.2f} MB") # Use moviepy to read video print("Opening video with moviepy...") try: clip = VideoFileClip(video_path) # Get video properties fps = clip.fps duration = clip.duration total_frames = int(fps * duration) print(f"Video info: FPS: {fps}, Duration: {duration}s, Total frames: {total_frames}") # Get first frame frame = clip.get_frame(0) # MoviePy returns RGB frame_rgb = (frame * 255).astype(np.uint8) if frame.max() <= 1.0 else frame.astype(np.uint8) print(f"Successfully read frame with moviepy: {frame_rgb.shape}") # Close the clip to free resources clip.close() # Convert to PIL for downstream processing frame_pil = Image.fromarray(frame_rgb) # Detect faces using RetinaFace print("Detecting faces with RetinaFace...") boxes, probs = detect_faces( frame_rgb, threshold=0.9, allow_upscaling=False, ) if boxes is None or len(boxes) == 0: print("No faces detected at high threshold, trying relaxed settings...") boxes, probs = detect_faces( frame_rgb, threshold=0.7, allow_upscaling=True, ) if boxes is not None and len(boxes) > 0: print(f"Detected {len(boxes)} faces") return process_detected_faces(boxes, probs, frame_rgb, frame_pil) else: return [], 0, frame_rgb, "No faces detected in the first frame" except Exception as e: print(f"MoviePy failed: {e}") import traceback traceback.print_exc() return [], 0, None, f"Failed to open video file. Error: {str(e)}" @spaces.GPU(duration=300, enable_queue=True) def process_video_gpu(video_file, temp_dir, num_speakers): """GPU-accelerated video processing""" try: from Inference_with_status import process_video_with_status # Define status callback inside GPU function def gpu_status_callback(message): status_text = message.get('status', 'Processing...') print(f"GPU Processing: {status_text}") progress_value = message.get('progress') with GPU_PROGRESS_LOCK: GPU_PROGRESS_STATE["status"] = status_text if progress_value is not None: try: numeric_progress = float(progress_value) GPU_PROGRESS_STATE["progress"] = min(max(numeric_progress, 0.0), 1.0) except (TypeError, ValueError): pass output_files = process_video_with_status( input_file=video_file, output_path=temp_dir, number_of_speakers=num_speakers, detect_every_N_frame=8, scalar_face_detection=1.5, status_callback=gpu_status_callback ) return output_files except ImportError: from Inference import process_video print("Using standard process_video (status callbacks not available)") output_files = process_video( input_file=video_file, output_path=temp_dir, number_of_speakers=num_speakers, detect_every_N_frame=8, scalar_face_detection=1.5 ) return output_files def process_video_auto(video_file, progress=gr.Progress()): """Process video with automatic speaker detection and stream status updates""" global GLOBAL_LOG GLOBAL_LOG = LogCollector() old_stdout = sys.stdout sys.stdout = StdoutCapture(old_stdout) status_value = "⏳ Ready to process..." detected_info_output = gr.update(visible=False) face_gallery_output = gr.update(visible=False) output_video_output = gr.update(visible=False) video_dict_value = None annotated_frame_output = gr.update(visible=False) def snapshot(): return ( status_value, detected_info_output, face_gallery_output, output_video_output, video_dict_value, annotated_frame_output, GLOBAL_LOG.get_text() ) try: if video_file is None: status_value = "⚠️ Please upload a video file" yield snapshot() return progress(0, desc="Starting processing...") status_value = "🔄 Starting processing..." GLOBAL_LOG.add("Starting video processing...") yield snapshot() temp_dir = None try: temp_dir = tempfile.mkdtemp(dir=TEMP_DIR) print(f"Created temporary directory: {temp_dir}") progress(0.1, desc="Detecting speakers in video...") status_value = "🔍 Detecting speakers in video..." print("Starting face detection in video...") yield snapshot() face_images, num_speakers, annotated_frame, error_msg = detect_and_extract_all_faces(video_file) print(f"Face detection completed. Found {num_speakers} speakers.") if error_msg: print(f"Error: {error_msg}") status_value = f"❌ {error_msg}" if annotated_frame is not None: annotated_frame_output = gr.update(value=annotated_frame, visible=True) yield snapshot() return if num_speakers == 0: print("No speakers detected in the video.") status_value = "❌ No speakers detected in the video. Please ensure faces are visible in the first frame." if annotated_frame is not None: annotated_frame_output = gr.update(value=annotated_frame, visible=True) yield snapshot() return face_gallery_images = [(img, f"Speaker {i+1}") for i, img in enumerate(face_images)] detected_info = f"🎯 Detected {num_speakers} speaker{'s' if num_speakers > 1 else ''} in the video" detected_info_output = gr.update(value=detected_info, visible=True) face_gallery_output = gr.update(value=face_gallery_images, visible=True) if annotated_frame is not None: annotated_frame_output = gr.update(value=annotated_frame, visible=True) progress(0.3, desc=f"Separating {num_speakers} speakers...") status_value = f"🎬 Separating {num_speakers} speakers..." print(f"Starting audio-visual separation for {num_speakers} speakers...") yield snapshot() try: print("Starting GPU-accelerated video processing...") with GPU_PROGRESS_LOCK: GPU_PROGRESS_STATE["progress"] = 0.0 GPU_PROGRESS_STATE["status"] = "Processing on GPU..." progress(0.4, desc="Processing on GPU...") status_value = "Processing on GPU..." yield snapshot() gpu_result = {"output_files": None, "exception": None} def run_gpu_processing(): try: gpu_result["output_files"] = process_video_gpu( video_file=video_file, temp_dir=temp_dir, num_speakers=num_speakers ) except Exception as exc: gpu_result["exception"] = exc gpu_thread = threading.Thread(target=run_gpu_processing, daemon=True) gpu_thread.start() last_reported_progress = 0.4 last_status_message = "Processing on GPU..." while gpu_thread.is_alive(): time.sleep(0.5) with GPU_PROGRESS_LOCK: gpu_status = GPU_PROGRESS_STATE.get("status", "Processing on GPU...") gpu_progress_value = GPU_PROGRESS_STATE.get("progress", 0.0) mapped_progress = 0.4 + 0.5 * gpu_progress_value mapped_progress = min(mapped_progress, 0.89) if ( mapped_progress > last_reported_progress + 0.01 or gpu_status != last_status_message ): progress(mapped_progress, desc=gpu_status) last_reported_progress = mapped_progress last_status_message = gpu_status status_value = gpu_status yield snapshot() gpu_thread.join() if gpu_result["exception"] is not None: raise gpu_result["exception"] output_files = gpu_result["output_files"] progress(0.9, desc="Preparing results...") status_value = "📦 Preparing results..." print("Processing completed successfully!") print(f"Generated {num_speakers} output videos") yield snapshot() video_dict_value = {i: output_files[i] for i in range(num_speakers)} video_dict_value['temp_dir'] = temp_dir output_video_output = gr.update(value=output_files[0], visible=True) progress(1.0, desc="Complete!") status_value = f"✅ Successfully separated {num_speakers} speakers! Click on any face below to view their video." yield snapshot() except Exception as e: print(f"Processing failed: {str(e)}") import traceback traceback.print_exc() status_value = f"❌ Processing failed: {str(e)}" output_video_output = gr.update(visible=False) video_dict_value = None yield snapshot() return except Exception as e: if temp_dir and os.path.exists(temp_dir): try: shutil.rmtree(temp_dir) except Exception: pass print(f"Error: {str(e)}") import traceback traceback.print_exc() status_value = f"❌ Error: {str(e)}" detected_info_output = gr.update(visible=False) face_gallery_output = gr.update(visible=False) output_video_output = gr.update(visible=False) annotated_frame_output = gr.update(visible=False) video_dict_value = None yield snapshot() return finally: sys.stdout = old_stdout def on_face_click(evt: gr.SelectData, video_dict): """Handle face gallery click events""" if video_dict is None or evt.index not in video_dict: return None return video_dict[evt.index] # Create the Gradio interface custom_css = """ .face-gallery { border-radius: 10px; overflow: hidden; } .face-gallery img { border-radius: 8px; transition: transform 0.2s ease-in-out; } .face-gallery img:hover { transform: scale(1.05); cursor: pointer; box-shadow: 0 4px 8px rgba(0,0,0,0.3); } .detected-info { background-color: #f0f0f0; padding: 10px; border-radius: 5px; margin: 10px 0; } """ with gr.Blocks( title="Video Speaker Auto-Separation", theme=gr.themes.Soft(), css=custom_css ) as demo: gr.Markdown( """ # 🎥 Dolphin: Efficient Audio-Visual Speech Separation with Discrete Lip Semantics and Hierarchical Top-Down Attention

访客统计GitHub starsStatic Badge

### Automatically detect and separate ALL speakers in your video Simply upload a video and the system will: 1. 🔍 Automatically detect all speakers in the video 2. 🎭 Show you each detected speaker's face 3. 🎬 Generate individual videos for each speaker with their isolated audio """ ) with gr.Row(): with gr.Column(scale=2): video_input = gr.Video( label="📹 Upload Your Video", height=300, interactive=True ) # Add example video section gr.Markdown("### 🎬 Try with Example Video") gr.Examples( examples=[["demo1/mix.mp4"]], inputs=video_input, label="Click to load example video", cache_examples=False ) process_btn = gr.Button( "🚀 Auto-Detect and Process", variant="primary", size="lg" ) status = gr.Textbox( label="Status", interactive=False, value="⏳ Ready to process..." ) processing_log = gr.Textbox( label="📋 Processing Details", lines=10, max_lines=15, interactive=False, value="" ) with gr.Column(scale=3): annotated_frame = gr.Image( label="📸 Detected Speakers in First Frame", visible=False, height=300 ) detected_info = gr.Markdown( visible=False, elem_classes="detected-info" ) gr.Markdown("### 👇 Click on any face below to view that speaker's video") face_gallery = gr.Gallery( label="Detected Speaker Faces", show_label=False, columns=5, rows=1, height=200, visible=False, object_fit="contain", elem_classes="face-gallery" ) output_video = gr.Video( label="🎬 Selected Speaker's Video", height=300, visible=False, autoplay=True ) # Hidden state video_dict = gr.State() gr.Markdown( """ --- ### 📖 How it works: 1. **Upload** - Select any video file 2. **Process** - Click the button to start automatic detection 3. **Review** - See all detected speakers and their positions 4. **Select** - Click on any face to watch that speaker's separated video ### 💡 Tips for best results: - ✅ Ensure all speakers' faces are visible in the first frame - ✅ Use videos with good lighting and clear face views - ✅ Works best with frontal or near-frontal face angles - ⏱️ Processing time depends on video length and number of speakers ### 🚀 Powered by: - RetinaFace for face detection - Dolphin model for audio-visual separation - GPU acceleration when available """ ) # Event handlers outputs_list = [ status, detected_info, face_gallery, output_video, video_dict, annotated_frame, processing_log ] process_btn.click( fn=process_video_auto, inputs=[video_input], outputs=outputs_list, show_progress=True ) face_gallery.select( fn=on_face_click, inputs=[video_dict], outputs=output_video ) # Launch the demo - HF Space will handle this automatically if __name__ == "__main__": import os demo.launch(server_name="0.0.0.0", server_port=7860)