|
|
import warnings |
|
|
warnings.filterwarnings("ignore") |
|
|
import os |
|
|
import torch |
|
|
import torchaudio |
|
|
import numpy as np |
|
|
from moviepy import * |
|
|
from PIL import Image, ImageDraw |
|
|
import face_alignment |
|
|
import cv2 |
|
|
|
|
|
from look2hear.models import Dolphin |
|
|
from look2hear.datas.transform import get_preprocessing_pipelines |
|
|
|
|
|
from face_detection_utils import detect_faces |
|
|
|
|
|
|
|
|
from Inference import ( |
|
|
linear_interpolate, warp_img, apply_transform, cut_patch, convert_bgr2gray, |
|
|
save2npz, read_video, face2head, bb_intersection_over_union, |
|
|
landmarks_interpolate, crop_patch, convert_video_fps, extract_audio, merge_video_audio |
|
|
) |
|
|
|
|
|
def detectface_with_status(video_input_path, output_path, detect_every_N_frame, scalar_face_detection, number_of_speakers, status_callback=None): |
|
|
"""Face detection with status updates""" |
|
|
device = torch.device('cuda' if torch.cuda.get_device_name() else 'cpu') |
|
|
if status_callback: |
|
|
status_callback({'status': f'Running on device: {device}', 'progress': 0.0}) |
|
|
|
|
|
os.makedirs(os.path.join(output_path, 'faces'), exist_ok=True) |
|
|
os.makedirs(os.path.join(output_path, 'landmark'), exist_ok=True) |
|
|
|
|
|
landmarks_dic = {} |
|
|
faces_dic = {} |
|
|
boxes_dic = {} |
|
|
|
|
|
for i in range(number_of_speakers): |
|
|
landmarks_dic[i] = [] |
|
|
faces_dic[i] = [] |
|
|
boxes_dic[i] = [] |
|
|
|
|
|
video_clip = VideoFileClip(video_input_path) |
|
|
if status_callback: |
|
|
status_callback({'status': f"Video: {video_clip.w}x{video_clip.h}, {video_clip.fps}fps", 'progress': 0.05}) |
|
|
|
|
|
frames = [Image.fromarray(frame) for frame in video_clip.iter_frames()] |
|
|
total_frames = len(frames) |
|
|
if status_callback: |
|
|
status_callback({'status': f'Processing {total_frames} frames', 'progress': 0.1}) |
|
|
|
|
|
video_clip.close() |
|
|
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False) |
|
|
|
|
|
for i, frame in enumerate(frames): |
|
|
if status_callback and i % 10 == 0: |
|
|
status_callback({'status': f'Tracking frame: {i+1}/{total_frames}', 'progress': 0.1 + 0.3 * (i / total_frames)}) |
|
|
|
|
|
|
|
|
if i % detect_every_N_frame == 0: |
|
|
frame_array = np.array(frame) |
|
|
|
|
|
detected_boxes, _ = detect_faces( |
|
|
frame_array, |
|
|
threshold=0.9, |
|
|
allow_upscaling=False, |
|
|
) |
|
|
|
|
|
if detected_boxes is None or len(detected_boxes) == 0: |
|
|
detected_boxes, _ = detect_faces( |
|
|
frame_array, |
|
|
threshold=0.7, |
|
|
allow_upscaling=True, |
|
|
) |
|
|
|
|
|
if detected_boxes is not None and len(detected_boxes) > 0: |
|
|
detected_boxes = np.asarray(detected_boxes, dtype=np.float32) |
|
|
areas = (detected_boxes[:, 2] - detected_boxes[:, 0]) * (detected_boxes[:, 3] - detected_boxes[:, 1]) |
|
|
sort_idx = np.argsort(areas)[::-1] |
|
|
detected_boxes = detected_boxes[sort_idx][:number_of_speakers] |
|
|
detected_boxes = face2head(detected_boxes, scalar_face_detection) |
|
|
detected_boxes = [box for box in detected_boxes] |
|
|
else: |
|
|
detected_boxes = [] |
|
|
|
|
|
|
|
|
if i == 0: |
|
|
|
|
|
if len(detected_boxes) < number_of_speakers: |
|
|
raise ValueError(f"First frame must detect at least {number_of_speakers} faces, but only found {len(detected_boxes)}") |
|
|
|
|
|
|
|
|
for j in range(number_of_speakers): |
|
|
box = detected_boxes[j] |
|
|
face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224)) |
|
|
preds = fa.get_landmarks(np.array(face)) |
|
|
|
|
|
if preds is None: |
|
|
raise ValueError(f"Face landmarks not detected in initial frame for speaker {j}") |
|
|
|
|
|
faces_dic[j].append(face) |
|
|
landmarks_dic[j].append(preds) |
|
|
boxes_dic[j].append(box) |
|
|
else: |
|
|
|
|
|
matched_speakers = set() |
|
|
speaker_boxes = [None] * number_of_speakers |
|
|
|
|
|
|
|
|
for box in detected_boxes: |
|
|
iou_scores = [] |
|
|
for speaker_id in range(number_of_speakers): |
|
|
if speaker_id in matched_speakers: |
|
|
iou_scores.append(-1) |
|
|
else: |
|
|
last_box = boxes_dic[speaker_id][-1] |
|
|
iou_score = bb_intersection_over_union(box, last_box) |
|
|
iou_scores.append(iou_score) |
|
|
|
|
|
if max(iou_scores) > 0: |
|
|
best_speaker = iou_scores.index(max(iou_scores)) |
|
|
speaker_boxes[best_speaker] = box |
|
|
matched_speakers.add(best_speaker) |
|
|
|
|
|
|
|
|
for speaker_id in range(number_of_speakers): |
|
|
if speaker_boxes[speaker_id] is not None: |
|
|
|
|
|
box = speaker_boxes[speaker_id] |
|
|
else: |
|
|
|
|
|
box = boxes_dic[speaker_id][-1] |
|
|
|
|
|
|
|
|
face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224)) |
|
|
preds = fa.get_landmarks(np.array(face)) |
|
|
|
|
|
if preds is None: |
|
|
|
|
|
preds = landmarks_dic[speaker_id][-1] |
|
|
|
|
|
faces_dic[speaker_id].append(face) |
|
|
landmarks_dic[speaker_id].append(preds) |
|
|
boxes_dic[speaker_id].append(box) |
|
|
|
|
|
|
|
|
frame_counts = [len(boxes_dic[s]) for s in range(number_of_speakers)] |
|
|
if status_callback: |
|
|
status_callback({'status': f"Frame counts per speaker: {frame_counts}", 'progress': 0.4}) |
|
|
|
|
|
assert all(count == len(frames) for count in frame_counts), f"Inconsistent frame counts: {frame_counts}" |
|
|
|
|
|
|
|
|
for s in range(number_of_speakers): |
|
|
if status_callback: |
|
|
status_callback({'status': f'Saving tracked video for speaker {s+1}', 'progress': 0.4 + 0.1 * (s / number_of_speakers)}) |
|
|
|
|
|
frames_tracked = [] |
|
|
for i, frame in enumerate(frames): |
|
|
frame_draw = frame.copy() |
|
|
draw = ImageDraw.Draw(frame_draw) |
|
|
draw.rectangle(boxes_dic[s][i], outline=(255, 0, 0), width=6) |
|
|
frames_tracked.append(frame_draw) |
|
|
|
|
|
|
|
|
tracked_frames = [np.array(frame) for frame in frames_tracked] |
|
|
if tracked_frames: |
|
|
tracked_clip = ImageSequenceClip(tracked_frames, fps=25.0) |
|
|
tracked_video_path = os.path.join(output_path, 'video_tracked' + str(s+1) + '.mp4') |
|
|
tracked_clip.write_videofile(tracked_video_path, codec='libx264', audio=False, logger=None) |
|
|
tracked_clip.close() |
|
|
|
|
|
|
|
|
for i in range(number_of_speakers): |
|
|
|
|
|
landmark_dir = os.path.join(output_path, 'landmark') |
|
|
os.makedirs(landmark_dir, exist_ok=True) |
|
|
save2npz(os.path.join(landmark_dir, 'speaker' + str(i+1)+'.npz'), data=landmarks_dic[i]) |
|
|
|
|
|
|
|
|
face_frames = [np.array(frame) for frame in faces_dic[i]] |
|
|
if face_frames: |
|
|
face_clip = ImageSequenceClip(face_frames, fps=25.0) |
|
|
face_video_path = os.path.join(output_path, 'faces', 'speaker' + str(i+1) + '.mp4') |
|
|
face_clip.write_videofile(face_video_path, codec='libx264', audio=False, logger=None) |
|
|
face_clip.close() |
|
|
|
|
|
|
|
|
parts = video_input_path.split('/') |
|
|
video_name = parts[-1][:-4] |
|
|
filename_dir = os.path.join(output_path, 'filename_input') |
|
|
os.makedirs(filename_dir, exist_ok=True) |
|
|
csvfile = open(os.path.join(filename_dir, str(video_name) + '.csv'), 'w') |
|
|
for i in range(number_of_speakers): |
|
|
csvfile.write('speaker' + str(i+1)+ ',0\n') |
|
|
csvfile.close() |
|
|
return os.path.join(filename_dir, str(video_name) + '.csv') |
|
|
|
|
|
|
|
|
def crop_mouth_with_status(video_direc, landmark_direc, filename_path, save_direc, status_callback=None, convert_gray=False, testset_only=False): |
|
|
"""Crop mouth with status updates""" |
|
|
lines = open(filename_path).read().splitlines() |
|
|
lines = list(filter(lambda x: 'test' in x, lines)) if testset_only else lines |
|
|
|
|
|
for filename_idx, line in enumerate(lines): |
|
|
filename, person_id = line.split(',') |
|
|
|
|
|
if status_callback: |
|
|
status_callback({'status': f'Processing speaker{int(person_id)+1}', 'progress': 0.5 + 0.1 * filename_idx / len(lines)}) |
|
|
|
|
|
video_pathname = os.path.join(video_direc, filename+'.mp4') |
|
|
landmarks_pathname = os.path.join(landmark_direc, filename+'.npz') |
|
|
|
|
|
|
|
|
os.makedirs(save_direc, exist_ok=True) |
|
|
dst_pathname = os.path.join(save_direc, filename+'.npz') |
|
|
|
|
|
multi_sub_landmarks = np.load(landmarks_pathname, allow_pickle=True)['data'] |
|
|
if len(multi_sub_landmarks) == 0: |
|
|
print(f"No landmarks found for {filename}, skipping crop.") |
|
|
continue |
|
|
|
|
|
landmark_frame_count = len(multi_sub_landmarks) |
|
|
cap = cv2.VideoCapture(video_pathname) |
|
|
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0) |
|
|
cap.release() |
|
|
|
|
|
if frame_count > 0 and frame_count != landmark_frame_count: |
|
|
print( |
|
|
f"Frame count mismatch for {filename}: video has {frame_count} frames, " |
|
|
f"landmarks have {landmark_frame_count} entries. Adjusting to match." |
|
|
) |
|
|
if frame_count < landmark_frame_count: |
|
|
multi_sub_landmarks = multi_sub_landmarks[:frame_count] |
|
|
else: |
|
|
pad_count = frame_count - landmark_frame_count |
|
|
pad = np.repeat(multi_sub_landmarks[-1:], pad_count, axis=0) |
|
|
multi_sub_landmarks = np.concatenate((multi_sub_landmarks, pad), axis=0) |
|
|
|
|
|
landmarks = [None] * len(multi_sub_landmarks) |
|
|
for frame_idx in range(len(landmarks)): |
|
|
try: |
|
|
landmarks[frame_idx] = multi_sub_landmarks[frame_idx][int(person_id)] |
|
|
except (IndexError, TypeError): |
|
|
continue |
|
|
|
|
|
|
|
|
preprocessed_landmarks = landmarks_interpolate(landmarks) |
|
|
if not preprocessed_landmarks: |
|
|
continue |
|
|
|
|
|
|
|
|
mean_face_landmarks = np.load('assets/20words_mean_face.npy') |
|
|
sequence = crop_patch(mean_face_landmarks, video_pathname, preprocessed_landmarks, 12, 48, 68, 96, 96) |
|
|
assert sequence is not None, "cannot crop from {}.".format(filename) |
|
|
|
|
|
|
|
|
data = convert_bgr2gray(sequence) if convert_gray else sequence[...,::-1] |
|
|
save2npz(dst_pathname, data=data) |
|
|
|
|
|
|
|
|
def process_video_with_status(input_file, output_path, number_of_speakers=2, |
|
|
detect_every_N_frame=8, scalar_face_detection=1.5, |
|
|
config_path="checkpoints/vox2/conf.yml", |
|
|
cuda_device=None, status_callback=None): |
|
|
"""Main processing function with status updates""" |
|
|
|
|
|
|
|
|
if cuda_device is not None: |
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(cuda_device) |
|
|
|
|
|
|
|
|
os.makedirs(output_path, exist_ok=True) |
|
|
|
|
|
|
|
|
if status_callback: |
|
|
status_callback({'status': 'Converting video to 25fps', 'progress': 0.0}) |
|
|
|
|
|
temp_25fps_file = os.path.join(output_path, 'temp_25fps.mp4') |
|
|
convert_video_fps(input_file, temp_25fps_file, target_fps=25) |
|
|
|
|
|
|
|
|
if status_callback: |
|
|
status_callback({'status': 'Detecting faces and tracking speakers', 'progress': 0.1}) |
|
|
|
|
|
filename_path = detectface_with_status( |
|
|
video_input_path=temp_25fps_file, |
|
|
output_path=output_path, |
|
|
detect_every_N_frame=detect_every_N_frame, |
|
|
scalar_face_detection=scalar_face_detection, |
|
|
number_of_speakers=number_of_speakers, |
|
|
status_callback=status_callback |
|
|
) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
if status_callback: |
|
|
status_callback({'status': 'Extracting audio from video', 'progress': 0.5}) |
|
|
|
|
|
audio_output = os.path.join(output_path, 'audio.wav') |
|
|
extract_audio(temp_25fps_file, audio_output, sample_rate=16000) |
|
|
|
|
|
|
|
|
if status_callback: |
|
|
status_callback({'status': 'Cropping mouth regions', 'progress': 0.55}) |
|
|
|
|
|
crop_mouth_with_status( |
|
|
video_direc=os.path.join(output_path, "faces"), |
|
|
landmark_direc=os.path.join(output_path, "landmark"), |
|
|
filename_path=filename_path, |
|
|
save_direc=os.path.join(output_path, "mouthroi"), |
|
|
convert_gray=True, |
|
|
testset_only=False, |
|
|
status_callback=status_callback |
|
|
) |
|
|
|
|
|
|
|
|
if status_callback: |
|
|
status_callback({'status': 'Loading Dolphin model', 'progress': 0.6}) |
|
|
torch.cuda.empty_cache() |
|
|
audiomodel = Dolphin.from_pretrained("JusperLee/Dolphin") |
|
|
|
|
|
audiomodel.eval() |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
for i in range(number_of_speakers): |
|
|
if status_callback: |
|
|
status_callback({'status': f'Processing audio for speaker {i+1}', 'progress': 0.65 + 0.25 * (i / number_of_speakers)}) |
|
|
|
|
|
mouth_roi_path = os.path.join(output_path, "mouthroi", f"speaker{i+1}.npz") |
|
|
mouth_roi = np.load(mouth_roi_path)["data"] |
|
|
mouth_roi = get_preprocessing_pipelines()["val"](mouth_roi) |
|
|
|
|
|
mix, sr = torchaudio.load(audio_output) |
|
|
mix = mix.mean(dim=0) |
|
|
|
|
|
window_size = 4 * sr |
|
|
hop_size = int(4 * sr) |
|
|
|
|
|
all_estimates = [] |
|
|
|
|
|
|
|
|
start_idx = 0 |
|
|
window_count = 0 |
|
|
while start_idx < len(mix): |
|
|
end_idx = min(start_idx + window_size, len(mix)) |
|
|
window_mix = mix[start_idx:end_idx] |
|
|
|
|
|
start_frame = int(start_idx / sr * 25) |
|
|
end_frame = int(end_idx / sr * 25) |
|
|
end_frame = min(end_frame, len(mouth_roi)) |
|
|
window_mouth_roi = mouth_roi[start_frame:end_frame] |
|
|
|
|
|
est_sources = audiomodel(window_mix[None], |
|
|
torch.from_numpy(window_mouth_roi[None, None]).float()) |
|
|
|
|
|
all_estimates.append({ |
|
|
'start': start_idx, |
|
|
'end': end_idx, |
|
|
'estimate': est_sources[0].cpu() |
|
|
}) |
|
|
|
|
|
window_count += 1 |
|
|
if status_callback: |
|
|
progress = 0.65 + 0.25 * (i / number_of_speakers) + 0.25 / number_of_speakers * (window_count * hop_size / len(mix)) |
|
|
status_callback({'status': f'Processing audio window {window_count} for speaker {i+1}', 'progress': min(progress, 0.9)}) |
|
|
|
|
|
start_idx += hop_size |
|
|
|
|
|
if start_idx >= len(mix): |
|
|
break |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
output_length = len(mix) |
|
|
merged_output = torch.zeros(1, output_length) |
|
|
weights = torch.zeros(output_length) |
|
|
|
|
|
for est in all_estimates: |
|
|
window_len = est['end'] - est['start'] |
|
|
hann_window = torch.hann_window(window_len) |
|
|
|
|
|
merged_output[0, est['start']:est['end']] += est['estimate'][0, :window_len] * hann_window |
|
|
weights[est['start']:est['end']] += hann_window |
|
|
|
|
|
merged_output[:, weights > 0] /= weights[weights > 0] |
|
|
|
|
|
audio_save_path = os.path.join(output_path, f"speaker{i+1}_est.wav") |
|
|
torchaudio.save(audio_save_path, merged_output, sr) |
|
|
|
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
if status_callback: |
|
|
status_callback({'status': 'Merging videos with separated audio', 'progress': 0.9}) |
|
|
|
|
|
output_files = [] |
|
|
for i in range(number_of_speakers): |
|
|
video_input = os.path.join(output_path, f"video_tracked{i+1}.mp4") |
|
|
audio_input = os.path.join(output_path, f"speaker{i+1}_est.wav") |
|
|
video_output = os.path.join(output_path, f"s{i+1}.mp4") |
|
|
|
|
|
merge_video_audio(video_input, audio_input, video_output) |
|
|
output_files.append(video_output) |
|
|
|
|
|
|
|
|
if os.path.exists(temp_25fps_file): |
|
|
os.remove(temp_25fps_file) |
|
|
|
|
|
if status_callback: |
|
|
status_callback({'status': 'Processing completed!', 'progress': 1.0}) |
|
|
|
|
|
return output_files |
|
|
|