File size: 23,311 Bytes
0cd6025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
#!/usr/bin/env python3
"""
Audio-visual Speech Separation Gradio App - Hugging Face Space Version
Automatically detects and separates all speakers in videos
"""

import warnings
warnings.filterwarnings("ignore")
import os
import gradio as gr
import numpy as np
import shutil
import tempfile
import time
import sys
import threading
from PIL import Image, ImageDraw, ImageFont
from moviepy import *
import spaces

from face_detection_utils import detect_faces

# Use HF Space's temp directory
TEMP_DIR = os.environ.get('TMPDIR', '/tmp')

# Shared state for relaying GPU-side status back to the UI thread.
GPU_PROGRESS_STATE = {"progress": 0.0, "status": "Processing on GPU..."}
GPU_PROGRESS_LOCK = threading.Lock()

class LogCollector:
    """Collect logs in a list"""
    def __init__(self):
        self.logs = []
        
    def add(self, message):
        if message and message.strip():
            timestamp = time.strftime("%H:%M:%S")
            self.logs.append(f"[{timestamp}] {message.strip()}")
    
    def get_text(self, last_n=None):
        if last_n:
            return "\n".join(self.logs[-last_n:])
        return "\n".join(self.logs)

# Global log collector for capturing print statements
GLOBAL_LOG = LogCollector()

class StdoutCapture:
    """Capture stdout and add to log"""
    def __init__(self, original):
        self.original = original
        
    def write(self, text):
        self.original.write(text)
        if text.strip():
            GLOBAL_LOG.add(text.strip())
    
    def flush(self):
        self.original.flush()

def remove_duplicate_faces(boxes, probs, iou_threshold=0.5):
    """Remove duplicate face detections using IoU (Intersection over Union)"""
    if len(boxes) <= 1:
        return boxes, probs
    
    # Calculate IoU between all pairs of boxes
    def calculate_iou(box1, box2):
        x1 = max(box1[0], box2[0])
        y1 = max(box1[1], box2[1])
        x2 = min(box1[2], box2[2])
        y2 = min(box1[3], box2[3])
        
        intersection = max(0, x2 - x1) * max(0, y2 - y1)
        area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
        area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
        union = area1 + area2 - intersection
        
        return intersection / union if union > 0 else 0
    
    # Keep track of which boxes to keep
    keep = []
    used = set()
    
    # Sort by confidence (if available) or by area
    if probs is not None:
        sorted_indices = np.argsort(probs)[::-1]
    else:
        areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
        sorted_indices = np.argsort(areas)[::-1]
    
    for i in sorted_indices:
        if i in used:
            continue
        
        keep.append(i)
        used.add(i)
        
        # Mark overlapping boxes as used
        for j in range(len(boxes)):
            if j != i and j not in used:
                iou = calculate_iou(boxes[i], boxes[j])
                if iou > iou_threshold:
                    used.add(j)
    
    # Return filtered boxes and probs
    keep = sorted(keep)  # Maintain original order
    filtered_boxes = boxes[keep]
    filtered_probs = probs[keep] if probs is not None else None
    
    return filtered_boxes, filtered_probs

def process_detected_faces(boxes, probs, frame_rgb, frame_pil):
    """Process detected faces and return face images"""
    face_images = []
    full_frame_annotated = frame_rgb.copy()

    if boxes is None or len(boxes) == 0:
        return [], 0, full_frame_annotated, "No faces detected"

    boxes = np.asarray(boxes, dtype=np.float32)

    # Filter by confidence if available
    if probs is not None:
        # Keep faces with confidence > 0.9
        confident_indices = probs > 0.9
        boxes = boxes[confident_indices]
        probs = probs[confident_indices]
        print(f"After filtering by confidence: {len(boxes)} faces")

    if len(boxes) == 0:
        return [], 0, full_frame_annotated, "No faces passed the confidence filter"

    # Remove duplicate detections
    boxes, probs = remove_duplicate_faces(boxes, probs, iou_threshold=0.3)
    print(f"After removing duplicates: {len(boxes)} faces")

    if len(boxes) == 0:
        return [], 0, full_frame_annotated, "No faces remained after duplicate removal"

    # Sort boxes by area (larger faces first)
    areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
    sorted_indices = np.argsort(areas)[::-1]
    boxes = boxes[sorted_indices]
    
    # Annotate full frame
    full_frame_pil = Image.fromarray(full_frame_annotated)
    draw = ImageDraw.Draw(full_frame_pil)
    
    # Try to use a better font
    try:
        font = ImageFont.load_default()
    except:
        font = None
    
    # Extract face images and annotate
    colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]
    
    for i, box in enumerate(boxes):
        color = colors[i % len(colors)]
        
        # Draw bounding box
        draw.rectangle(box.tolist(), outline=color, width=4)
        label = f"Speaker {i+1}"
        
        # Draw label
        if font:
            draw.text((box[0] + 5, box[1] - 20), label, fill=color, font=font)
        
        # Extract face with margin
        margin = 50
        x1 = max(0, int(box[0] - margin))
        y1 = max(0, int(box[1] - margin))
        x2 = min(frame_rgb.shape[1], int(box[2] + margin))
        y2 = min(frame_rgb.shape[0], int(box[3] + margin))
        
        face_crop = frame_rgb[y1:y2, x1:x2]
        # Resize maintaining aspect ratio
        face_crop = Image.fromarray(face_crop)
        face_crop.thumbnail((250, 250), Image.Resampling.LANCZOS)
        face_crop = np.array(face_crop)
        
        face_images.append(face_crop)
    
    full_frame_annotated = np.array(full_frame_pil)
    return face_images, len(boxes), full_frame_annotated, None

@spaces.GPU(duration=60, enable_queue=True)
def detect_faces_gpu(frame_pil):
    """GPU-accelerated face detection"""
    print("Detecting faces with RetinaFace")

    frame_array = np.array(frame_pil)

    boxes, probs = detect_faces(
        frame_array,
        threshold=0.9,
        allow_upscaling=False,
    )

    if boxes is None or len(boxes) == 0:
        print("No faces detected at high threshold, relaxing criteria...")
        boxes, probs = detect_faces(
            frame_array,
            threshold=0.7,
            allow_upscaling=True,
        )

    return boxes, probs

def detect_and_extract_all_faces(video_path):
    """Detect all faces in the first frame and extract them"""
    print("Starting face detection...")
    
    # Check if video file exists
    if not os.path.exists(video_path):
        print(f"Error: Video file does not exist at path: {video_path}")
        return [], 0, None, f"Video file not found: {video_path}"
    
    print(f"Video path: {video_path}")
    print(f"File size: {os.path.getsize(video_path) / 1024 / 1024:.2f} MB")
    
    # Use moviepy to read video
    print("Opening video with moviepy...")
    try:
        clip = VideoFileClip(video_path)
        
        # Get video properties
        fps = clip.fps
        duration = clip.duration
        total_frames = int(fps * duration)
        
        print(f"Video info: FPS: {fps}, Duration: {duration}s, Total frames: {total_frames}")
        
        # Get first frame
        frame = clip.get_frame(0)  # MoviePy returns RGB
        frame_rgb = (frame * 255).astype(np.uint8) if frame.max() <= 1.0 else frame.astype(np.uint8)
        
        print(f"Successfully read frame with moviepy: {frame_rgb.shape}")
        
        # Close the clip to free resources
        clip.close()
        
        # Convert to PIL for downstream processing
        frame_pil = Image.fromarray(frame_rgb)

        # Detect faces using RetinaFace
        print("Detecting faces with RetinaFace...")
        boxes, probs = detect_faces(
            frame_rgb,
            threshold=0.9,
            allow_upscaling=False,
        )

        if boxes is None or len(boxes) == 0:
            print("No faces detected at high threshold, trying relaxed settings...")
            boxes, probs = detect_faces(
                frame_rgb,
                threshold=0.7,
                allow_upscaling=True,
            )

        if boxes is not None and len(boxes) > 0:
            print(f"Detected {len(boxes)} faces")
            return process_detected_faces(boxes, probs, frame_rgb, frame_pil)
        else:
            return [], 0, frame_rgb, "No faces detected in the first frame"
                
    except Exception as e:
        print(f"MoviePy failed: {e}")
        import traceback
        traceback.print_exc()
        return [], 0, None, f"Failed to open video file. Error: {str(e)}"

@spaces.GPU(duration=300, enable_queue=True)
def process_video_gpu(video_file, temp_dir, num_speakers):
    """GPU-accelerated video processing"""
    try:
        from Inference_with_status import process_video_with_status
        
        # Define status callback inside GPU function
        def gpu_status_callback(message):
            status_text = message.get('status', 'Processing...')
            print(f"GPU Processing: {status_text}")
            progress_value = message.get('progress')
            with GPU_PROGRESS_LOCK:
                GPU_PROGRESS_STATE["status"] = status_text
                if progress_value is not None:
                    try:
                        numeric_progress = float(progress_value)
                        GPU_PROGRESS_STATE["progress"] = min(max(numeric_progress, 0.0), 1.0)
                    except (TypeError, ValueError):
                        pass
        
        output_files = process_video_with_status(
            input_file=video_file,
            output_path=temp_dir,
            number_of_speakers=num_speakers,
            detect_every_N_frame=8,
            scalar_face_detection=1.5,
            status_callback=gpu_status_callback
        )
        return output_files
    except ImportError:
        from Inference import process_video
        print("Using standard process_video (status callbacks not available)")
        output_files = process_video(
            input_file=video_file,
            output_path=temp_dir,
            number_of_speakers=num_speakers,
            detect_every_N_frame=8,
            scalar_face_detection=1.5
        )
        return output_files

def process_video_auto(video_file, progress=gr.Progress()):
    """Process video with automatic speaker detection and stream status updates"""
    global GLOBAL_LOG
    GLOBAL_LOG = LogCollector()

    old_stdout = sys.stdout
    sys.stdout = StdoutCapture(old_stdout)

    status_value = "โณ Ready to process..."
    detected_info_output = gr.update(visible=False)
    face_gallery_output = gr.update(visible=False)
    output_video_output = gr.update(visible=False)
    video_dict_value = None
    annotated_frame_output = gr.update(visible=False)

    def snapshot():
        return (
            status_value,
            detected_info_output,
            face_gallery_output,
            output_video_output,
            video_dict_value,
            annotated_frame_output,
            GLOBAL_LOG.get_text()
        )

    try:
        if video_file is None:
            status_value = "โš ๏ธ Please upload a video file"
            yield snapshot()
            return

        progress(0, desc="Starting processing...")
        status_value = "๐Ÿ”„ Starting processing..."
        GLOBAL_LOG.add("Starting video processing...")
        yield snapshot()

        temp_dir = None
        try:
            temp_dir = tempfile.mkdtemp(dir=TEMP_DIR)
            print(f"Created temporary directory: {temp_dir}")

            progress(0.1, desc="Detecting speakers in video...")
            status_value = "๐Ÿ” Detecting speakers in video..."
            print("Starting face detection in video...")
            yield snapshot()

            face_images, num_speakers, annotated_frame, error_msg = detect_and_extract_all_faces(video_file)
            print(f"Face detection completed. Found {num_speakers} speakers.")

            if error_msg:
                print(f"Error: {error_msg}")
                status_value = f"โŒ {error_msg}"
                if annotated_frame is not None:
                    annotated_frame_output = gr.update(value=annotated_frame, visible=True)
                yield snapshot()
                return

            if num_speakers == 0:
                print("No speakers detected in the video.")
                status_value = "โŒ No speakers detected in the video. Please ensure faces are visible in the first frame."
                if annotated_frame is not None:
                    annotated_frame_output = gr.update(value=annotated_frame, visible=True)
                yield snapshot()
                return

            face_gallery_images = [(img, f"Speaker {i+1}") for i, img in enumerate(face_images)]
            detected_info = f"๐ŸŽฏ Detected {num_speakers} speaker{'s' if num_speakers > 1 else ''} in the video"
            detected_info_output = gr.update(value=detected_info, visible=True)
            face_gallery_output = gr.update(value=face_gallery_images, visible=True)
            if annotated_frame is not None:
                annotated_frame_output = gr.update(value=annotated_frame, visible=True)

            progress(0.3, desc=f"Separating {num_speakers} speakers...")
            status_value = f"๐ŸŽฌ Separating {num_speakers} speakers..."
            print(f"Starting audio-visual separation for {num_speakers} speakers...")
            yield snapshot()

            try:
                print("Starting GPU-accelerated video processing...")
                with GPU_PROGRESS_LOCK:
                    GPU_PROGRESS_STATE["progress"] = 0.0
                    GPU_PROGRESS_STATE["status"] = "Processing on GPU..."

                progress(0.4, desc="Processing on GPU...")
                status_value = "Processing on GPU..."
                yield snapshot()

                gpu_result = {"output_files": None, "exception": None}

                def run_gpu_processing():
                    try:
                        gpu_result["output_files"] = process_video_gpu(
                            video_file=video_file,
                            temp_dir=temp_dir,
                            num_speakers=num_speakers
                        )
                    except Exception as exc:
                        gpu_result["exception"] = exc

                gpu_thread = threading.Thread(target=run_gpu_processing, daemon=True)
                gpu_thread.start()

                last_reported_progress = 0.4
                last_status_message = "Processing on GPU..."

                while gpu_thread.is_alive():
                    time.sleep(0.5)
                    with GPU_PROGRESS_LOCK:
                        gpu_status = GPU_PROGRESS_STATE.get("status", "Processing on GPU...")
                        gpu_progress_value = GPU_PROGRESS_STATE.get("progress", 0.0)

                    mapped_progress = 0.4 + 0.5 * gpu_progress_value
                    mapped_progress = min(mapped_progress, 0.89)

                    if (
                        mapped_progress > last_reported_progress + 0.01
                        or gpu_status != last_status_message
                    ):
                        progress(mapped_progress, desc=gpu_status)
                        last_reported_progress = mapped_progress
                        last_status_message = gpu_status
                        status_value = gpu_status
                        yield snapshot()

                gpu_thread.join()

                if gpu_result["exception"] is not None:
                    raise gpu_result["exception"]

                output_files = gpu_result["output_files"]

                progress(0.9, desc="Preparing results...")
                status_value = "๐Ÿ“ฆ Preparing results..."
                print("Processing completed successfully!")
                print(f"Generated {num_speakers} output videos")
                yield snapshot()

                video_dict_value = {i: output_files[i] for i in range(num_speakers)}
                video_dict_value['temp_dir'] = temp_dir
                output_video_output = gr.update(value=output_files[0], visible=True)

                progress(1.0, desc="Complete!")
                status_value = f"โœ… Successfully separated {num_speakers} speakers! Click on any face below to view their video."
                yield snapshot()

            except Exception as e:
                print(f"Processing failed: {str(e)}")
                import traceback
                traceback.print_exc()
                status_value = f"โŒ Processing failed: {str(e)}"
                output_video_output = gr.update(visible=False)
                video_dict_value = None
                yield snapshot()
                return

        except Exception as e:
            if temp_dir and os.path.exists(temp_dir):
                try:
                    shutil.rmtree(temp_dir)
                except Exception:
                    pass

            print(f"Error: {str(e)}")
            import traceback
            traceback.print_exc()
            status_value = f"โŒ Error: {str(e)}"
            detected_info_output = gr.update(visible=False)
            face_gallery_output = gr.update(visible=False)
            output_video_output = gr.update(visible=False)
            annotated_frame_output = gr.update(visible=False)
            video_dict_value = None
            yield snapshot()
            return
    finally:
        sys.stdout = old_stdout

def on_face_click(evt: gr.SelectData, video_dict):
    """Handle face gallery click events"""
    if video_dict is None or evt.index not in video_dict:
        return None
    
    return video_dict[evt.index]

# Create the Gradio interface
custom_css = """
.face-gallery {
    border-radius: 10px;
    overflow: hidden;
}
.face-gallery img {
    border-radius: 8px;
    transition: transform 0.2s ease-in-out;
}
.face-gallery img:hover {
    transform: scale(1.05);
    cursor: pointer;
    box-shadow: 0 4px 8px rgba(0,0,0,0.3);
}
.detected-info {
    background-color: #f0f0f0;
    padding: 10px;
    border-radius: 5px;
    margin: 10px 0;
}
"""

with gr.Blocks(
    title="Video Speaker Auto-Separation",
    theme=gr.themes.Soft(),
    css=custom_css
) as demo:
    gr.Markdown(
        """
        # ๐ŸŽฅ Dolphin: Efficient Audio-Visual Speech Separation with Discrete Lip Semantics and Hierarchical Top-Down Attention
        <p align="left">
        <img src="https://visitor-badge.laobi.icu/badge?page_id=JusperLee.Dolphin" alt="่ฎฟๅฎข็ปŸ่ฎก" /><img src="https://img.shields.io/github/stars/JusperLee/Dolphin?style=social" alt="GitHub stars" /><img alt="Static Badge" src="https://img.shields.io/badge/license-Apache%202.0-blue.svg" />
        </p>
        
        ### Automatically detect and separate ALL speakers in your video
        
        Simply upload a video and the system will:
        1. ๐Ÿ” Automatically detect all speakers in the video
        2. ๐ŸŽญ Show you each detected speaker's face
        3. ๐ŸŽฌ Generate individual videos for each speaker with their isolated audio
        """
    )
    
    with gr.Row():
        with gr.Column(scale=2):
            video_input = gr.Video(
                label="๐Ÿ“น Upload Your Video",
                height=300,
                interactive=True
            )
            
            # Add example video section
            gr.Markdown("### ๐ŸŽฌ Try with Example Video")
            gr.Examples(
                examples=[["demo1/mix.mp4"]],
                inputs=video_input,
                label="Click to load example video",
                cache_examples=False
            )
            
            process_btn = gr.Button(
                "๐Ÿš€ Auto-Detect and Process",
                variant="primary",
                size="lg"
            )
            
            status = gr.Textbox(
                label="Status",
                interactive=False,
                value="โณ Ready to process..."
            )
            
            processing_log = gr.Textbox(
                label="๐Ÿ“‹ Processing Details",
                lines=10,
                max_lines=15,
                interactive=False,
                value=""
            )
        
        with gr.Column(scale=3):
            annotated_frame = gr.Image(
                label="๐Ÿ“ธ Detected Speakers in First Frame",
                visible=False,
                height=300
            )
            
            detected_info = gr.Markdown(
                visible=False,
                elem_classes="detected-info"
            )
            
            gr.Markdown("### ๐Ÿ‘‡ Click on any face below to view that speaker's video")
            
            face_gallery = gr.Gallery(
                label="Detected Speaker Faces",
                show_label=False,
                columns=5,
                rows=1,
                height=200,
                visible=False,
                object_fit="contain",
                elem_classes="face-gallery"
            )
            
            output_video = gr.Video(
                label="๐ŸŽฌ Selected Speaker's Video",
                height=300,
                visible=False,
                autoplay=True
            )
    
    # Hidden state
    video_dict = gr.State()
    
    gr.Markdown(
        """
        ---
        ### ๐Ÿ“– How it works:
        
        1. **Upload** - Select any video file
        2. **Process** - Click the button to start automatic detection
        3. **Review** - See all detected speakers and their positions
        4. **Select** - Click on any face to watch that speaker's separated video
        
        ### ๐Ÿ’ก Tips for best results:
        
        - โœ… Ensure all speakers' faces are visible in the first frame
        - โœ… Use videos with good lighting and clear face views
        - โœ… Works best with frontal or near-frontal face angles
        - โฑ๏ธ Processing time depends on video length and number of speakers
        
        ### ๐Ÿš€ Powered by:
        - RetinaFace for face detection
        - Dolphin model for audio-visual separation
        - GPU acceleration when available
        <footer style="display:none;">
            <a href='https://clustrmaps.com/site/1c828' title='Visit tracker'>
                <img src='//clustrmaps.com/map_v2.png?cl=080808&w=300&t=tt&d=XYmTC4S_SxuX7G06iJ16lU43VCNkCBFRLXMfEM5zvmo&co=ffffff&ct=808080'/>
            </a>
        </footer>
        """
    )
    
    # Event handlers
    outputs_list = [
        status,
        detected_info,
        face_gallery,
        output_video,
        video_dict,
        annotated_frame,
        processing_log
    ]
    
    process_btn.click(
        fn=process_video_auto,
        inputs=[video_input],
        outputs=outputs_list,
        show_progress=True
    )
    
    face_gallery.select(
        fn=on_face_click,
        inputs=[video_dict],
        outputs=output_video
    )

# Launch the demo - HF Space will handle this automatically
if __name__ == "__main__":
    import os
    demo.launch(server_name="0.0.0.0", server_port=7860)