import torch import copy from torch import nn, Tensor import os import math import torch.nn.functional as F from torch import nn class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def inverse_sigmoid(x, eps=1e-5): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1/x2) def gen_encoder_output_proposals(memory:Tensor, memory_padding_mask:Tensor, spatial_shapes:Tensor): """ Input: - memory: bs, \sum{hw}, d_model - memory_padding_mask: bs, \sum{hw} - spatial_shapes: nlevel, 2 Output: - output_memory: bs, \sum{hw}, d_model - output_proposals: bs, \sum{hw}, 4 """ N_, S_, C_ = memory.shape base_scale = 4.0 proposals = [] _cur = 0 for lvl, (H_, W_) in enumerate(spatial_shapes): mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device)) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl) proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) proposals.append(proposal) _cur += (H_ * W_) output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True) output_proposals = torch.log(output_proposals / (1 - output_proposals)) output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf')) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf')) output_memory = memory output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) return output_memory, output_proposals def gen_sineembed_for_position(pos_tensor): # n_query, bs, _ = pos_tensor.size() # sineembed_tensor = torch.zeros(n_query, bs, 256) scale = 2 * math.pi dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device) dim_t = 10000 ** (2 * (dim_t // 2) / 128) x_embed = pos_tensor[:, :, 0] * scale y_embed = pos_tensor[:, :, 1] * scale pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) if pos_tensor.size(-1) == 2: pos = torch.cat((pos_y, pos_x), dim=2) elif pos_tensor.size(-1) == 4: w_embed = pos_tensor[:, :, 2] * scale pos_w = w_embed[:, :, None] / dim_t pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) h_embed = pos_tensor[:, :, 3] * scale pos_h = h_embed[:, :, None] / dim_t pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) else: raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1))) return pos def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu if activation == "prelu": return nn.PReLU() if activation == "selu": return F.selu raise RuntimeError(F"activation should be relu/gelu, not {activation}.") def _get_clones(module, N, layer_share=False): if layer_share: return nn.ModuleList([module for i in range(N)]) else: return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _get_clones_advanced(module, N, N_valid): assert N_valid <= N layers = [] for i in range(N): if i < N_valid: layers.append(copy.deepcopy(module)) else: layers.append(nn.Identity()) return nn.ModuleList(layers)