try: import detectron2 except: import os os.system('pip install git+https://github.com/facebookresearch/detectron2.git') os.system('cd GLEE/glee/models/pixel_decoder/ops && sh mask.sh') # os.system('python -m pip install -e detectron2') import gradio as gr import numpy as np import cv2 import torch from detectron2.config import get_cfg from GLEE.glee.models.glee_model import GLEE_Model from GLEE.glee.config_deeplab import add_deeplab_config from GLEE.glee.config import add_glee_config import torch.nn.functional as F import torchvision import math from obj365_name import categories as OBJ365_CATEGORIESV2 print(f"Is CUDA available: {torch.cuda.is_available()}") # True if torch.cuda.is_available(): print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") # Tesla T4 def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def scribble2box(img): if img.max()==0: return None, None rows = np.any(img, axis=1) cols = np.any(img, axis=0) all = np.any(img,axis=2) R,G,B,A = img[np.where(all)[0][0],np.where(all)[1][0]].tolist() # get color ymin, ymax = np.where(rows)[0][[0, -1]] xmin, xmax = np.where(cols)[0][[0, -1]] return np.array([ xmin,ymin, xmax,ymax]), (R,G,B) def LSJ_box_postprocess( out_bbox, padding_size, crop_size, img_h, img_w): # postprocess box height and width boxes = box_cxcywh_to_xyxy(out_bbox) lsj_sclae = torch.tensor([padding_size[1], padding_size[0], padding_size[1], padding_size[0]]).to(out_bbox) crop_scale = torch.tensor([crop_size[1], crop_size[0], crop_size[1], crop_size[0]]).to(out_bbox) boxes = boxes * lsj_sclae boxes = boxes / crop_scale boxes = torch.clamp(boxes,0,1) scale_fct = torch.tensor([img_w, img_h, img_w, img_h]) scale_fct = scale_fct.to(out_bbox) boxes = boxes * scale_fct return boxes COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933], [0.494, 0.000, 0.556], [0.494, 0.000, 0.000], [0.000, 0.745, 0.000], [0.700, 0.300, 0.600],[0.000, 0.447, 0.741], [0.850, 0.325, 0.098]] coco_class_name = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] OBJ365_class_names = [cat['name'] for cat in OBJ365_CATEGORIESV2] class_agnostic_name = ['object'] if torch.cuda.is_available(): print('use cuda') device = 'cuda' else: print('use cpu') device='cpu' cfg_r50 = get_cfg() add_deeplab_config(cfg_r50) add_glee_config(cfg_r50) conf_files_r50 = 'GLEE/configs/R50.yaml' checkpoints_r50 = torch.load('GLEE_R50_Scaleup10m.pth') cfg_r50.merge_from_file(conf_files_r50) GLEEmodel_r50 = GLEE_Model(cfg_r50, None, device, None, True).to(device) GLEEmodel_r50.load_state_dict(checkpoints_r50, strict=False) GLEEmodel_r50.eval() cfg_swin = get_cfg() add_deeplab_config(cfg_swin) add_glee_config(cfg_swin) conf_files_swin = 'GLEE/configs/SwinL.yaml' checkpoints_swin = torch.load('GLEE_SwinL_Scaleup10m.pth') cfg_swin.merge_from_file(conf_files_swin) GLEEmodel_swin = GLEE_Model(cfg_swin, None, device, None, True).to(device) GLEEmodel_swin.load_state_dict(checkpoints_swin, strict=False) GLEEmodel_swin.eval() pixel_mean = torch.Tensor( [123.675, 116.28, 103.53]).to(device).view(3, 1, 1) pixel_std = torch.Tensor([58.395, 57.12, 57.375]).to(device).view(3, 1, 1) normalizer = lambda x: (x - pixel_mean) / pixel_std inference_size = 800 inference_type = 'resize_shot' # or LSJ size_divisibility = 32 FONT_SCALE = 1.5e-3 THICKNESS_SCALE = 1e-3 TEXT_Y_OFFSET_SCALE = 1e-2 if inference_type != 'LSJ': resizer = torchvision.transforms.Resize(inference_size) def segment_image(img,prompt_mode, categoryname, custom_category, expressiong, results_select, num_inst_select, threshold_select, mask_image_mix_ration, model_selection): if model_selection == 'GLEE-Plus (SwinL)': GLEEmodel = GLEEmodel_swin print('use GLEE-Plus') else: GLEEmodel = GLEEmodel_r50 print('use GLEE-Lite') copyed_img = img['background'][:,:,:3].copy() ori_image = torch.as_tensor(np.ascontiguousarray( copyed_img.transpose(2, 0, 1))) ori_image = normalizer(ori_image.to(device))[None,] _,_, ori_height, ori_width = ori_image.shape if inference_type == 'LSJ': infer_image = torch.zeros(1,3,1024,1024).to(ori_image) infer_image[:,:,:inference_size,:inference_size] = ori_image else: resize_image = resizer(ori_image) image_size = torch.as_tensor((resize_image.shape[-2],resize_image.shape[-1])) re_size = resize_image.shape[-2:] if size_divisibility > 1: stride = size_divisibility # the last two dims are H,W, both subject to divisibility requirement padding_size = ((image_size + (stride - 1)).div(stride, rounding_mode="floor") * stride).tolist() infer_image = torch.zeros(1,3,padding_size[0],padding_size[1]).to(resize_image) infer_image[0,:,:image_size[0],:image_size[1]] = resize_image # reversed_image = infer_image*pixel_std + pixel_mean # reversed_image = torch.clip(reversed_image,min=0,max=255) # reversed_image = reversed_image[0].permute(1,2,0) # reversed_image = reversed_image.int().cpu().numpy().copy() # cv2.imwrite('test.png',reversed_image[:,:,::-1]) if prompt_mode == 'categories' or prompt_mode == 'expression': if len(results_select)==0: results_select=['box'] if prompt_mode == 'categories': if categoryname =="COCO-80": batch_category_name = coco_class_name elif categoryname =="OBJ365": batch_category_name = OBJ365_class_names elif categoryname =="Custom-List": batch_category_name = custom_category.split(',') else: batch_category_name = class_agnostic_name # mask_ori = torch.from_numpy(np.load('03_moto_mask.npy'))[None,] # mask_ori = (F.interpolate(mask_ori, (height, width), mode='bilinear') > 0).to(device) # prompt_list = [mask_ori[0]] prompt_list = [] with torch.no_grad(): (outputs,_) = GLEEmodel(infer_image, prompt_list, task="coco", batch_name_list=batch_category_name, is_train=False) topK_instance = max(num_inst_select,1) else: topK_instance = 1 prompt_list = {'grounding':[expressiong]} with torch.no_grad(): (outputs,_) = GLEEmodel(infer_image, prompt_list, task="grounding", batch_name_list=[], is_train=False) mask_pred = outputs['pred_masks'][0] mask_cls = outputs['pred_logits'][0] boxes_pred = outputs['pred_boxes'][0] scores = mask_cls.sigmoid().max(-1)[0] scores_per_image, topk_indices = scores.topk(topK_instance, sorted=True) if prompt_mode == 'categories': valid = scores_per_image>threshold_select topk_indices = topk_indices[valid] scores_per_image = scores_per_image[valid] pred_class = mask_cls[topk_indices].max(-1)[1].tolist() pred_boxes = boxes_pred[topk_indices] boxes = LSJ_box_postprocess(pred_boxes,padding_size,re_size, ori_height,ori_width) mask_pred = mask_pred[topk_indices] pred_masks = F.interpolate( mask_pred[None,], size=(padding_size[0], padding_size[1]), mode="bilinear", align_corners=False ) pred_masks = pred_masks[:,:,:re_size[0],:re_size[1]] pred_masks = F.interpolate( pred_masks, size=(ori_height,ori_width), mode="bilinear", align_corners=False ) pred_masks = (pred_masks>0).detach().cpu().numpy()[0] if 'mask' in results_select: zero_mask = np.zeros_like(copyed_img) for nn, mask in enumerate(pred_masks): # mask = mask.numpy() mask = mask.reshape(mask.shape[0], mask.shape[1], 1) lar = np.concatenate((mask*COLORS[nn%12][2], mask*COLORS[nn%12][1], mask*COLORS[nn%12][0]), axis = 2) zero_mask = zero_mask+ lar lar_valid = zero_mask>0 masked_image = lar_valid*copyed_img img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,1)*255*(1-mask_image_mix_ration) max_p = img_n.max() img_n = 255*img_n/max_p ret = (~lar_valid*copyed_img)*mask_image_mix_ration + img_n ret = ret.astype('uint8') else: ret = copyed_img if 'box' in results_select: line_width = max(ret.shape) /200 for nn,(classid, box) in enumerate(zip(pred_class,boxes)): x1,y1,x2,y2 = box.long().tolist() RGB = (COLORS[nn%12][2]*255,COLORS[nn%12][1]*255,COLORS[nn%12][0]*255) cv2.rectangle(ret, (x1,y1), (x2,y2), RGB, math.ceil(line_width) ) if prompt_mode == 'categories' or (prompt_mode == 'expression' and 'expression' in results_select ): if prompt_mode == 'categories': label = '' if 'name' in results_select: label += batch_category_name[classid] if 'score' in results_select: label += str(scores_per_image[nn].item())[:4] else: label = expressiong if len(label)==0: continue height, width, _ = ret.shape FONT = cv2.FONT_HERSHEY_COMPLEX label_width, label_height = cv2.getTextSize(label, FONT, min(width, height) * FONT_SCALE, math.ceil(min(width, height) * THICKNESS_SCALE))[0] cv2.rectangle(ret, (x1,y1), (x1+label_width,(y1 -label_height) - int(height * TEXT_Y_OFFSET_SCALE)), RGB, -1) cv2.putText( ret, label, (x1, y1 - int(height * TEXT_Y_OFFSET_SCALE)), fontFace=FONT, fontScale=min(width, height) * FONT_SCALE, thickness=math.ceil(min(width, height) * THICKNESS_SCALE), color=(255,255,255), ) ret = ret.astype('uint8') return ret else: #visual prompt topK_instance = 1 copyed_img = img['background'][:,:,:3].copy() # get bbox from scribbles in layers bbox_list = [scribble2box(layer) for layer in img['layers'] ] visual_prompt_list = [] visual_prompt_RGB_list = [] for mask, (box,RGB) in zip(img['layers'], bbox_list): if box is None: continue if prompt_mode=='box': fakemask = np.zeros_like(copyed_img[:,:,0]) x1 ,y1 ,x2, y2 = box fakemask[ y1:y2, x1:x2 ] = 1 fakemask = fakemask>0 elif prompt_mode=='point': fakemask = np.zeros_like(copyed_img[:,:,0]) H,W = fakemask.shape x1 ,y1 ,x2, y2 = box center_x, center_y = (x1+x2)//2, (y1+y2)//2 fakemask[ center_y-H//40:center_y+H//40, center_x-W//40:center_x+W//40 ] = 1 fakemask = fakemask>0 elif prompt_mode=='scribble': fakemask = mask[:,:,-1] fakemask = fakemask>0 fakemask = torch.from_numpy(fakemask).unsqueeze(0).to(ori_image) if inference_type == 'LSJ': infer_visual_prompt = torch.zeros(1,1024,1024).to(ori_image) infer_visual_prompt[:,:inference_size,:inference_size] = fakemask else: resize_fakemask = resizer(fakemask) if size_divisibility > 1: # the last two dims are H,W, both subject to divisibility requirement infer_visual_prompt = torch.zeros(1,padding_size[0],padding_size[1]).to(resize_fakemask) infer_visual_prompt[:,:image_size[0],:image_size[1]] = resize_fakemask visual_prompt_list.append( infer_visual_prompt>0 ) visual_prompt_RGB_list.append(RGB) mask_results_list = [] for visual_prompt in visual_prompt_list: prompt_list = {'spatial':[visual_prompt]} with torch.no_grad(): (outputs,_) = GLEEmodel(infer_image, prompt_list, task="coco", batch_name_list=['object'], is_train=False, visual_prompt_type=prompt_mode ) mask_pred = outputs['pred_masks'][0] mask_cls = outputs['pred_logits'][0] boxes_pred = outputs['pred_boxes'][0] scores = mask_cls.sigmoid().max(-1)[0] scores_per_image, topk_indices = scores.topk(topK_instance, sorted=True) pred_class = mask_cls[topk_indices].max(-1)[1].tolist() pred_boxes = boxes_pred[topk_indices] boxes = LSJ_box_postprocess(pred_boxes,padding_size,re_size, ori_height,ori_width) mask_pred = mask_pred[topk_indices] pred_masks = F.interpolate( mask_pred[None,], size=(padding_size[0], padding_size[1]), mode="bilinear", align_corners=False ) pred_masks = pred_masks[:,:,:re_size[0],:re_size[1]] pred_masks = F.interpolate( pred_masks, size=(ori_height,ori_width), mode="bilinear", align_corners=False ) pred_masks = (pred_masks>0).detach().cpu().numpy()[0] mask_results_list.append(pred_masks) zero_mask = np.zeros_like(copyed_img) for mask,RGB in zip(mask_results_list,visual_prompt_RGB_list): mask = mask.reshape(mask.shape[-2], mask.shape[-1], 1) lar = np.concatenate((mask*RGB[0], mask*RGB[1],mask*RGB[2]), axis = 2) zero_mask = zero_mask+ lar lar_valid = zero_mask>0 masked_image = lar_valid*copyed_img img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,255)*(1-mask_image_mix_ration) max_p = img_n.max() img_n = 255*img_n/max_p ret = (~lar_valid*copyed_img)*mask_image_mix_ration + img_n ret = ret.astype('uint8') # cv2.imwrite('00020_inst.jpg', cv2.cvtColor(ret, cv2.COLOR_BGR2RGB)) return ret # def get_select_coordinates(img): # # img{'background': (H,W,3) # # 'layers': list[ (H,W,4(RGBA)) ], draw map # # 'composite': (H,W,4(RGBA))} ori_img concat drow # ori_img = img['background'][:,:,:3].copy() # # get bbox from scribbles in layers # bbox_list = [scribble2box(layer) for layer in img['layers'] ] # for mask, (box,RGB) in zip(img['layers'], bbox_list): # if box is None: # continue # cv2.rectangle(ori_img, (box[0],box[1]), (box[2],box[3]),RGB, 3) # return ori_img def visual_prompt_preview(img, prompt_mode): copyed_img = img['background'][:,:,:3].copy() # get bbox from scribbles in layers bbox_list = [scribble2box(layer) for layer in img['layers'] ] zero_mask = np.zeros_like(copyed_img) for mask, (box,RGB) in zip(img['layers'], bbox_list): if box is None: continue if prompt_mode=='box': fakemask = np.zeros_like(copyed_img[:,:,0]) x1 ,y1 ,x2, y2 = box fakemask[ y1:y2, x1:x2 ] = 1 fakemask = fakemask>0 elif prompt_mode=='point': fakemask = np.zeros_like(copyed_img[:,:,0]) H,W = fakemask.shape x1 ,y1 ,x2, y2 = box center_x, center_y = (x1+x2)//2, (y1+y2)//2 fakemask[ center_y-H//40:center_y+H//40, center_x-W//40:center_x+W//40 ] = 1 fakemask = fakemask>0 else: fakemask = mask[:,:,-1] fakemask = fakemask>0 mask = fakemask.reshape(fakemask.shape[0], fakemask.shape[1], 1) lar = np.concatenate((mask*RGB[0], mask*RGB[1],mask*RGB[2]), axis = 2) zero_mask = zero_mask+ lar img_n = copyed_img + np.clip(zero_mask,0,255) max_p = img_n.max() ret = 255*img_n/max_p ret = ret.astype('uint8') return ret with gr.Blocks() as demo: gr.Markdown('# GLEE: General Object Foundation Model for Images and Videos at Scale') gr.Markdown('## [Paper](https://arxiv.org/abs/2312.09158) - [Project Page](https://glee-vision.github.io) - [Code](https://github.com/FoundationVision/GLEE) ') gr.Markdown( '**The functionality demonstration demo app of GLEE. Select a Tab for image or video tasks. Image tasks includes arbitrary vocabulary object detection&segmentation, any form of object name or object caption detection, referring expression comprehension, and interactive segmentation. Video tasks add object tracking functionality based on image tasks.**' ) with gr.Tab("Image task"): with gr.Row(): with gr.Column(): img_input = gr.ImageEditor() model_select = gr.Dropdown( ["GLEE-Lite (R50)", "GLEE-Plus (SwinL)"], value = "GLEE-Plus (SwinL)" , multiselect=False, label="Model", ) with gr.Row(): with gr.Column(): prompt_mode_select = gr.Radio(["point", "scribble", "box", "categories", "expression"], label="Prompt", value= "categories" , info="What kind of prompt do you want to use?") category_select = gr.Dropdown( ["COCO-80", "OBJ365", "Custom-List", "Class-Agnostic"], value = "COCO-80" , multiselect=False, label="Categories", info="Choose an existing category list or class-agnostic" ) custom_category = gr.Textbox( label="Custom Category", info="Input custom category list, seperate by ',' ", lines=1, value="dog, cat, car, person", ) input_expressiong = gr.Textbox( label="Expression", info="Input any description of an object in the image ", lines=2, value="the red car", ) # with gr.Column(): with gr.Group(): with gr.Accordion("Text based detection usage",open=False): gr.Markdown( 'Press the "Detect & Segment" button directly to try the effect using the COCO category.
\ GLEE supports three kind of object perception methods: category list, textual description, and class-agnostic.
\ 1.Select an existing category list from the "Categories" dropdown, like COCO or OBJ365, or customize your own list.
\ 2.Enter arbitrary object name in "Custom Category", or choose the expression model and describe the object in "Expression Textbox" for single object detection only.
\ 3.For class-agnostic mode, choose "Class-Agnostic" from the "Categories" dropdown.' ) with gr.Accordion("Interactive segmentation usage",open=False): gr.Markdown( 'For interactive segmentation:
\ 1.Draw points, boxes, or scribbles on the canvas for multiclass segmentation; use separate layers for different objects, adding layers with a "+" sign.
\ 2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.
\ 3.After drawing, click green "√" on the right side of the image to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.' ) img_showbox = gr.Image(label="visual prompt area preview") with gr.Column(): image_segment = gr.Image(label="detection and segmentation results") with gr.Accordion("Try More Visualization Options"): results_select = gr.CheckboxGroup(["box", "mask", "name", "score", "expression"], value=["box", "mask", "name", "score"], label="Shown Results", info="The results shown on image") num_inst_select = gr.Slider(1, 50, value=15, step=1, label="Num of topK instances for category based detection", info="Choose between 1 and 50 for better visualization") threshold_select = gr.Slider(0, 1, value=0.2, label="Confidence Threshold", info="Choose threshold ") mask_image_mix_ration = gr.Slider(0, 1, value=0.45, label="Image Brightness Ratio", info="Brightness between image and colored masks ") image_button = gr.Button("Detect & Segment") img_input.change(visual_prompt_preview, inputs = [img_input,prompt_mode_select] , outputs = img_showbox) image_button.click(segment_image, inputs=[img_input, prompt_mode_select, category_select, custom_category,input_expressiong, results_select, num_inst_select, threshold_select, mask_image_mix_ration,model_select], outputs=image_segment) with gr.Tab("Video task"): with gr.Row(): gr.Markdown( '# Due to computational resource limitations, support for video tasks is being processed and is expected to be available within a week.' ) video_input = gr.Image() video_button = gr.Button("Segment&Track") if __name__ == '__main__': demo.launch(inbrowser=True,share=True)