import gradio as gr from transformers import pipeline pipe = pipeline(task="text2text-generation", model="Jumpy-pku/t5-dish-name-recognition") pipe_aux = pipeline(task="text2text-generation", model="Jumpy-pku/t5-dish-name-recognition-auxiliary") def predict(input_text): verbs = pipe_aux(f"“{input_text}”这个菜谱的主要操作是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"] flavs = pipe_aux(f"“{input_text}”这个菜谱的主要风味是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"] ings = pipe_aux(f"“{input_text}”这个菜谱的主要食材是什么?", max_length=20, num_return_sequences=1)[0]["generated_text"] comp_prompt = "" if verbs: comp_prompt += f"这个菜谱的主要操作是{verbs}," if flavs: comp_prompt += f"这个菜谱的主要风味是{flavs}," if ings: comp_prompt += f"这个菜谱的主要食材是{ings}," comp_prompt += "这个菜谱的菜名是什么?" return pipe(f"“{input_text}”{comp_prompt}", max_length=20, num_return_sequences=1)[0]["generated_text"] demo = gr.Interface(fn=predict, inputs="text", outputs="text", title="菜名生成", description="Input the instructions of a Chinese recipe, the model will generate the corresponding dish name.\n输入菜谱步骤,生成菜名。") demo.launch()