"""LangGraph Agent""" import os from dotenv import load_dotenv from langchain.tools.retriever import create_retriever_tool from langchain_community.document_loaders import ArxivLoader, WikipediaLoader # https://python.langchain.com.cn/docs/modules/data_connection/text_embedding/integrations/sentence_transformers from langchain_community.embeddings import SentenceTransformerEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.messages import AIMessage, HumanMessage, SystemMessage from langchain_core.tools import tool # pip install -qU langchain_milvus # pip install arxiv # pip install pymupdf from langchain_milvus import Milvus from langchain_openai import ChatOpenAI from langfuse.langchain import CallbackHandler from langgraph.graph import START, MessagesState, StateGraph from langgraph.prebuilt import ToolNode, tools_condition load_dotenv() @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) return {"wiki_results": formatted_search_docs} @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" search_docs = TavilySearchResults(max_results=3).invoke(input=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc["content"]}\n' for doc in search_docs ] ) return {"web_results": formatted_search_docs} @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) return {"arvix_results": formatted_search_docs} # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) URI = "./milvus_example.db" # https://zhuanlan.zhihu.com/p/29949362142 embedding_function = SentenceTransformerEmbeddings(model_name="moka-ai/m3e-base") vector_store = Milvus( embedding_function=embedding_function, connection_args={"uri": URI}, collection_name="documents", ) retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="QuestionSearch", description="A tool to retrieve similar questions from a vector store.", ) tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, retriever_tool, ] def clean_think_tags(text: str) -> str: """qwen3 清理字符串中的标签及其内容 Args: text: 输入的字符串 Returns: 清理后的字符串 """ import re pattern = r".*?\s*\n?" return re.sub(pattern, "", text, flags=re.DOTALL) # Build graph function def build_graph(provider: str = "openai"): """Build the graph""" # Load environment variables from .env file if provider == "openai": llm = ChatOpenAI( model=os.environ["OPENAI_MODEL"], base_url=os.environ["OPENAI_BASE_URL"], api_key=os.environ["OPENAI_API_KEY"], temperature=0, ) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" _msg = llm_with_tools.invoke(state["messages"]) if isinstance(_msg, AIMessage): _msg.content = clean_think_tags(_msg.content) return {"messages": [_msg]} def retriever(state: MessagesState): """Retriever node""" similar_question = vector_store.similarity_search( state["messages"][0].content, k=1 ) example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", ) return {"messages": [sys_msg] + state["messages"] + [example_msg]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph return builder.compile() # test if __name__ == "__main__": langfuse_handler = CallbackHandler() question = "What country had the least number of athletes at the 1928 Summer Olympics? If there's a tie for a number of athletes, return the first in alphabetical order. Give the IOC country code as your answer." question = "1+1=" # Build the graph graph = build_graph(provider="openai") # Run the graph messages = [HumanMessage(content=question)] messages = graph.invoke( input={"messages": messages}, config={"callbacks": [langfuse_handler]}, ) for m in messages["messages"]: m.pretty_print() # https://huggingface.co/spaces/agents-course/Unit4-Final-Certificate