import gradio as gr import cv2 import math import numpy as np import os import mediapipe as mp import predict from mediapipe.tasks import python from mediapipe.tasks.python import vision # Height and width that will be used by the model DESIRED_HEIGHT = 480 DESIRED_WIDTH = 480 # Performs resizing and showing the image def resize_and_show(image): h, w = image.shape[:2] if h < w: img = cv2.resize(image, (DESIRED_WIDTH, math.floor(h/(w/DESIRED_WIDTH)))) else: img = cv2.resize(image, (math.floor(w/(h/DESIRED_HEIGHT)), DESIRED_HEIGHT)) cv2.imshow('color', img) cv2.waitKey(1000) cv2.destroyAllWindows() def segmentate(filepath): BG_COLOR = (192, 192, 192) # gray MASK_COLOR = (255, 255, 255) # white # Create the options that will be used for ImageSegmenter base_options = python.BaseOptions(model_asset_path='./hair_segmenter.tflite') options = vision.ImageSegmenterOptions(base_options=base_options,output_category_mask=True) # Create the image segmenter with vision.ImageSegmenter.create_from_options(options) as segmenter: # Loop through demo image(s) # Create the MediaPipe image file that will be segmented print(filepath) image = mp.Image.create_from_file(filepath) # Retrieve the masks for the segmented image segmentation_result = segmenter.segment(image) category_mask = segmentation_result.category_mask # Generate solid color images for showing the output segmentation mask. image_data = image.numpy_view() fg_image = np.zeros(image_data.shape, dtype=np.uint8) fg_image[:] = MASK_COLOR bg_image = np.zeros(image_data.shape, dtype=np.uint8) bg_image[:] = BG_COLOR condition = np.stack((category_mask.numpy_view(),) * 3, axis=-1) > 0.2 output_image = np.where(condition, fg_image, bg_image) # print(f'Segmentation mask of {name}:') # resize_and_show(output_image) prediction = predict.predict(filepath)[0][0] print(prediction) limits = [0.002, 0.1, 0.4, 0.95, 0.97, 0.991, 1] print(np.where(prediction < limits)[0][0]) """ img = cv2.cvtColor(output_image, cv2.COLOR_BGR2GRAY) # print(np.unique(img)) _, thresh = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY_INV) # plt.imshow(thresh, cmap='gray') contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) im = cv2.drawContours(img, contours, -1, (0,255,0), 3) """ return np.where(prediction < limits)[0][0] + 1, output_image # GUI title = 'Hair loss prediction' description = 'Automatic Prediction of Nordwood scale state. For more information on the scale, click [here](https://www.medicalnewstoday.com/articles/327001#stages).' examples = [[f'examples/{name}', 3] for name in sorted(os.listdir('examples'))] iface = gr.Interface( fn=segmentate, inputs=[ gr.Image(type='filepath', label='Input Image') ], outputs=[ gr.Number(label='Nordwood Scale'), gr.Image(label='Hair Segmentation') ], examples=examples, allow_flagging='never', cache_examples=False, title=title, description=description ) iface.launch(share=True)