import streamlit as st from transformers import pipeline import tensorflow as tf import numpy as np from tensorflow.keras.layers import TextVectorization from tensorflow import keras model = tf.keras.models.load_model('toxicity_model.h5') df = pd.read_csv('train.csv') X = df['comment_text'] y = df[df.columns[2:]].values MAX_FEATURES = 200000 vectorizer = TextVectorization(max_tokens=MAX_FEATURES, output_sequence_length=1800, output_mode='int') vectorizer.adapt(X.values) input_str = vectorizer('I hate you.') res = model.predict(np.expand_dims(input_str,0)) classification = res[0].tolist() st.write(classification)