# Copyright (c) Facebook, Inc. and its affiliates. from .config import CfgNode as CN # ----------------------------------------------------------------------------- # Convention about Training / Test specific parameters # ----------------------------------------------------------------------------- # Whenever an argument can be either used for training or for testing, the # corresponding name will be post-fixed by a _TRAIN for a training parameter, # or _TEST for a test-specific parameter. # For example, the number of images during training will be # IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be # IMAGES_PER_BATCH_TEST # ----------------------------------------------------------------------------- # Config definition # ----------------------------------------------------------------------------- _C = CN() # The version number, to upgrade from old configs to new ones if any # changes happen. It's recommended to keep a VERSION in your config file. _C.VERSION = 2 _C.MODEL = CN() _C.MODEL.LOAD_PROPOSALS = False _C.MODEL.MASK_ON = False _C.MODEL.KEYPOINT_ON = False _C.MODEL.DEVICE = "cuda" _C.MODEL.META_ARCHITECTURE = "GeneralizedRCNN" # Path (a file path, or URL like detectron2://.., https://..) to a checkpoint file # to be loaded to the model. You can find available models in the model zoo. _C.MODEL.WEIGHTS = "" # Values to be used for image normalization (BGR order, since INPUT.FORMAT defaults to BGR). # To train on images of different number of channels, just set different mean & std. # Default values are the mean pixel value from ImageNet: [103.53, 116.28, 123.675] _C.MODEL.PIXEL_MEAN = [103.530, 116.280, 123.675] # When using pre-trained models in Detectron1 or any MSRA models, # std has been absorbed into its conv1 weights, so the std needs to be set 1. # Otherwise, you can use [57.375, 57.120, 58.395] (ImageNet std) _C.MODEL.PIXEL_STD = [1.0, 1.0, 1.0] # ----------------------------------------------------------------------------- # INPUT # ----------------------------------------------------------------------------- _C.INPUT = CN() # Size of the smallest side of the image during training _C.INPUT.MIN_SIZE_TRAIN = (800,) # Sample size of smallest side by choice or random selection from range give by # INPUT.MIN_SIZE_TRAIN _C.INPUT.MIN_SIZE_TRAIN_SAMPLING = "choice" # Maximum size of the side of the image during training _C.INPUT.MAX_SIZE_TRAIN = 1333 # Size of the smallest side of the image during testing. Set to zero to disable resize in testing. _C.INPUT.MIN_SIZE_TEST = 800 # Maximum size of the side of the image during testing _C.INPUT.MAX_SIZE_TEST = 1333 # Mode for flipping images used in data augmentation during training # choose one of ["horizontal, "vertical", "none"] _C.INPUT.RANDOM_FLIP = "horizontal" # `True` if cropping is used for data augmentation during training _C.INPUT.CROP = CN({"ENABLED": False}) # Cropping type. See documentation of `detectron2.data.transforms.RandomCrop` for explanation. _C.INPUT.CROP.TYPE = "relative_range" # Size of crop in range (0, 1] if CROP.TYPE is "relative" or "relative_range" and in number of # pixels if CROP.TYPE is "absolute" _C.INPUT.CROP.SIZE = [0.9, 0.9] _C.INPUT.CROP.CROP_INSTANCE = False # Whether the model needs RGB, YUV, HSV etc. # Should be one of the modes defined here, as we use PIL to read the image: # https://pillow.readthedocs.io/en/stable/handbook/concepts.html#concept-modes # with BGR being the one exception. One can set image format to BGR, we will # internally use RGB for conversion and flip the channels over _C.INPUT.FORMAT = "BGR" # The ground truth mask format that the model will use. # Mask R-CNN supports either "polygon" or "bitmask" as ground truth. _C.INPUT.MASK_FORMAT = "polygon" # alternative: "bitmask" # ----------------------------------------------------------------------------- # Dataset # ----------------------------------------------------------------------------- _C.DATASETS = CN() # List of the dataset names for training. Must be registered in DatasetCatalog # Samples from these datasets will be merged and used as one dataset. _C.DATASETS.TRAIN = () # List of the pre-computed proposal files for training, which must be consistent # with datasets listed in DATASETS.TRAIN. _C.DATASETS.PROPOSAL_FILES_TRAIN = () # Number of top scoring precomputed proposals to keep for training _C.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TRAIN = 2000 # List of the dataset names for testing. Must be registered in DatasetCatalog _C.DATASETS.TEST = () # List of the pre-computed proposal files for test, which must be consistent # with datasets listed in DATASETS.TEST. _C.DATASETS.PROPOSAL_FILES_TEST = () # Number of top scoring precomputed proposals to keep for test _C.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TEST = 1000 # ----------------------------------------------------------------------------- # DataLoader # ----------------------------------------------------------------------------- _C.DATALOADER = CN() # Number of data loading threads _C.DATALOADER.NUM_WORKERS = 4 # If True, each batch should contain only images for which the aspect ratio # is compatible. This groups portrait images together, and landscape images # are not batched with portrait images. _C.DATALOADER.ASPECT_RATIO_GROUPING = True # Options: TrainingSampler, RepeatFactorTrainingSampler _C.DATALOADER.SAMPLER_TRAIN = "TrainingSampler" # Repeat threshold for RepeatFactorTrainingSampler _C.DATALOADER.REPEAT_THRESHOLD = 0.0 # Tf True, when working on datasets that have instance annotations, the # training dataloader will filter out images without associated annotations _C.DATALOADER.FILTER_EMPTY_ANNOTATIONS = True # ---------------------------------------------------------------------------- # # Backbone options # ---------------------------------------------------------------------------- # _C.MODEL.BACKBONE = CN() _C.MODEL.BACKBONE.NAME = "build_resnet_backbone" # Freeze the first several stages so they are not trained. # There are 5 stages in ResNet. The first is a convolution, and the following # stages are each group of residual blocks. _C.MODEL.BACKBONE.FREEZE_AT = 2 # ---------------------------------------------------------------------------- # # FPN options # ---------------------------------------------------------------------------- # _C.MODEL.FPN = CN() # Names of the input feature maps to be used by FPN # They must have contiguous power of 2 strides # e.g., ["res2", "res3", "res4", "res5"] _C.MODEL.FPN.IN_FEATURES = [] _C.MODEL.FPN.OUT_CHANNELS = 256 # Options: "" (no norm), "GN" _C.MODEL.FPN.NORM = "" # Types for fusing the FPN top-down and lateral features. Can be either "sum" or "avg" _C.MODEL.FPN.FUSE_TYPE = "sum" # ---------------------------------------------------------------------------- # # Proposal generator options # ---------------------------------------------------------------------------- # _C.MODEL.PROPOSAL_GENERATOR = CN() # Current proposal generators include "RPN", "RRPN" and "PrecomputedProposals" _C.MODEL.PROPOSAL_GENERATOR.NAME = "RPN" # Proposal height and width both need to be greater than MIN_SIZE # (a the scale used during training or inference) _C.MODEL.PROPOSAL_GENERATOR.MIN_SIZE = 0 # ---------------------------------------------------------------------------- # # Anchor generator options # ---------------------------------------------------------------------------- # _C.MODEL.ANCHOR_GENERATOR = CN() # The generator can be any name in the ANCHOR_GENERATOR registry _C.MODEL.ANCHOR_GENERATOR.NAME = "DefaultAnchorGenerator" # Anchor sizes (i.e. sqrt of area) in absolute pixels w.r.t. the network input. # Format: list[list[float]]. SIZES[i] specifies the list of sizes to use for # IN_FEATURES[i]; len(SIZES) must be equal to len(IN_FEATURES) or 1. # When len(SIZES) == 1, SIZES[0] is used for all IN_FEATURES. _C.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64, 128, 256, 512]] # Anchor aspect ratios. For each area given in `SIZES`, anchors with different aspect # ratios are generated by an anchor generator. # Format: list[list[float]]. ASPECT_RATIOS[i] specifies the list of aspect ratios (H/W) # to use for IN_FEATURES[i]; len(ASPECT_RATIOS) == len(IN_FEATURES) must be true, # or len(ASPECT_RATIOS) == 1 is true and aspect ratio list ASPECT_RATIOS[0] is used # for all IN_FEATURES. _C.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.5, 1.0, 2.0]] # Anchor angles. # list[list[float]], the angle in degrees, for each input feature map. # ANGLES[i] specifies the list of angles for IN_FEATURES[i]. _C.MODEL.ANCHOR_GENERATOR.ANGLES = [[-90, 0, 90]] # Relative offset between the center of the first anchor and the top-left corner of the image # Value has to be in [0, 1). Recommend to use 0.5, which means half stride. # The value is not expected to affect model accuracy. _C.MODEL.ANCHOR_GENERATOR.OFFSET = 0.0 # ---------------------------------------------------------------------------- # # RPN options # ---------------------------------------------------------------------------- # _C.MODEL.RPN = CN() _C.MODEL.RPN.HEAD_NAME = "StandardRPNHead" # used by RPN_HEAD_REGISTRY # Names of the input feature maps to be used by RPN # e.g., ["p2", "p3", "p4", "p5", "p6"] for FPN _C.MODEL.RPN.IN_FEATURES = ["res4"] # Remove RPN anchors that go outside the image by BOUNDARY_THRESH pixels # Set to -1 or a large value, e.g. 100000, to disable pruning anchors _C.MODEL.RPN.BOUNDARY_THRESH = -1 # IOU overlap ratios [BG_IOU_THRESHOLD, FG_IOU_THRESHOLD] # Minimum overlap required between an anchor and ground-truth box for the # (anchor, gt box) pair to be a positive example (IoU >= FG_IOU_THRESHOLD # ==> positive RPN example: 1) # Maximum overlap allowed between an anchor and ground-truth box for the # (anchor, gt box) pair to be a negative examples (IoU < BG_IOU_THRESHOLD # ==> negative RPN example: 0) # Anchors with overlap in between (BG_IOU_THRESHOLD <= IoU < FG_IOU_THRESHOLD) # are ignored (-1) _C.MODEL.RPN.IOU_THRESHOLDS = [0.3, 0.7] _C.MODEL.RPN.IOU_LABELS = [0, -1, 1] # Number of regions per image used to train RPN _C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256 # Target fraction of foreground (positive) examples per RPN minibatch _C.MODEL.RPN.POSITIVE_FRACTION = 0.5 # Options are: "smooth_l1", "giou" _C.MODEL.RPN.BBOX_REG_LOSS_TYPE = "smooth_l1" _C.MODEL.RPN.BBOX_REG_LOSS_WEIGHT = 1.0 # Weights on (dx, dy, dw, dh) for normalizing RPN anchor regression targets _C.MODEL.RPN.BBOX_REG_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # The transition point from L1 to L2 loss. Set to 0.0 to make the loss simply L1. _C.MODEL.RPN.SMOOTH_L1_BETA = 0.0 _C.MODEL.RPN.LOSS_WEIGHT = 1.0 # Number of top scoring RPN proposals to keep before applying NMS # When FPN is used, this is *per FPN level* (not total) _C.MODEL.RPN.PRE_NMS_TOPK_TRAIN = 12000 _C.MODEL.RPN.PRE_NMS_TOPK_TEST = 6000 # Number of top scoring RPN proposals to keep after applying NMS # When FPN is used, this limit is applied per level and then again to the union # of proposals from all levels # NOTE: When FPN is used, the meaning of this config is different from Detectron1. # It means per-batch topk in Detectron1, but per-image topk here. # See the "find_top_rpn_proposals" function for details. _C.MODEL.RPN.POST_NMS_TOPK_TRAIN = 2000 _C.MODEL.RPN.POST_NMS_TOPK_TEST = 1000 # NMS threshold used on RPN proposals _C.MODEL.RPN.NMS_THRESH = 0.7 # Set this to -1 to use the same number of output channels as input channels. _C.MODEL.RPN.CONV_DIMS = [-1] # ---------------------------------------------------------------------------- # # ROI HEADS options # ---------------------------------------------------------------------------- # _C.MODEL.ROI_HEADS = CN() _C.MODEL.ROI_HEADS.NAME = "Res5ROIHeads" # Number of foreground classes _C.MODEL.ROI_HEADS.NUM_CLASSES = 80 # Names of the input feature maps to be used by ROI heads # Currently all heads (box, mask, ...) use the same input feature map list # e.g., ["p2", "p3", "p4", "p5"] is commonly used for FPN _C.MODEL.ROI_HEADS.IN_FEATURES = ["res4"] # IOU overlap ratios [IOU_THRESHOLD] # Overlap threshold for an RoI to be considered background (if < IOU_THRESHOLD) # Overlap threshold for an RoI to be considered foreground (if >= IOU_THRESHOLD) _C.MODEL.ROI_HEADS.IOU_THRESHOLDS = [0.5] _C.MODEL.ROI_HEADS.IOU_LABELS = [0, 1] # RoI minibatch size *per image* (number of regions of interest [ROIs]) # Total number of RoIs per training minibatch = # ROI_HEADS.BATCH_SIZE_PER_IMAGE * SOLVER.IMS_PER_BATCH # E.g., a common configuration is: 512 * 16 = 8192 _C.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512 # Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0) _C.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.25 # Only used on test mode # Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to # balance obtaining high recall with not having too many low precision # detections that will slow down inference post processing steps (like NMS) # A default threshold of 0.0 increases AP by ~0.2-0.3 but significantly slows down # inference. _C.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.05 # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) _C.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.5 # If True, augment proposals with ground-truth boxes before sampling proposals to # train ROI heads. _C.MODEL.ROI_HEADS.PROPOSAL_APPEND_GT = True # ---------------------------------------------------------------------------- # # Box Head # ---------------------------------------------------------------------------- # _C.MODEL.ROI_BOX_HEAD = CN() # C4 don't use head name option # Options for non-C4 models: FastRCNNConvFCHead, _C.MODEL.ROI_BOX_HEAD.NAME = "" # Options are: "smooth_l1", "giou" _C.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_TYPE = "smooth_l1" # The final scaling coefficient on the box regression loss, used to balance the magnitude of its # gradients with other losses in the model. See also `MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT`. _C.MODEL.ROI_BOX_HEAD.BBOX_REG_LOSS_WEIGHT = 1.0 # Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets # These are empirically chosen to approximately lead to unit variance targets _C.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10.0, 10.0, 5.0, 5.0) # The transition point from L1 to L2 loss. Set to 0.0 to make the loss simply L1. _C.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA = 0.0 _C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO = 0 # Type of pooling operation applied to the incoming feature map for each RoI _C.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2" _C.MODEL.ROI_BOX_HEAD.NUM_FC = 0 # Hidden layer dimension for FC layers in the RoI box head _C.MODEL.ROI_BOX_HEAD.FC_DIM = 1024 _C.MODEL.ROI_BOX_HEAD.NUM_CONV = 0 # Channel dimension for Conv layers in the RoI box head _C.MODEL.ROI_BOX_HEAD.CONV_DIM = 256 # Normalization method for the convolution layers. # Options: "" (no norm), "GN", "SyncBN". _C.MODEL.ROI_BOX_HEAD.NORM = "" # Whether to use class agnostic for bbox regression _C.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG = False # If true, RoI heads use bounding boxes predicted by the box head rather than proposal boxes. _C.MODEL.ROI_BOX_HEAD.TRAIN_ON_PRED_BOXES = False # ---------------------------------------------------------------------------- # # Cascaded Box Head # ---------------------------------------------------------------------------- # _C.MODEL.ROI_BOX_CASCADE_HEAD = CN() # The number of cascade stages is implicitly defined by the length of the following two configs. _C.MODEL.ROI_BOX_CASCADE_HEAD.BBOX_REG_WEIGHTS = ( (10.0, 10.0, 5.0, 5.0), (20.0, 20.0, 10.0, 10.0), (30.0, 30.0, 15.0, 15.0), ) _C.MODEL.ROI_BOX_CASCADE_HEAD.IOUS = (0.5, 0.6, 0.7) # ---------------------------------------------------------------------------- # # Mask Head # ---------------------------------------------------------------------------- # _C.MODEL.ROI_MASK_HEAD = CN() _C.MODEL.ROI_MASK_HEAD.NAME = "MaskRCNNConvUpsampleHead" _C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_MASK_HEAD.NUM_CONV = 0 # The number of convs in the mask head _C.MODEL.ROI_MASK_HEAD.CONV_DIM = 256 # Normalization method for the convolution layers. # Options: "" (no norm), "GN", "SyncBN". _C.MODEL.ROI_MASK_HEAD.NORM = "" # Whether to use class agnostic for mask prediction _C.MODEL.ROI_MASK_HEAD.CLS_AGNOSTIC_MASK = False # Type of pooling operation applied to the incoming feature map for each RoI _C.MODEL.ROI_MASK_HEAD.POOLER_TYPE = "ROIAlignV2" # ---------------------------------------------------------------------------- # # Keypoint Head # ---------------------------------------------------------------------------- # _C.MODEL.ROI_KEYPOINT_HEAD = CN() _C.MODEL.ROI_KEYPOINT_HEAD.NAME = "KRCNNConvDeconvUpsampleHead" _C.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_KEYPOINT_HEAD.CONV_DIMS = tuple(512 for _ in range(8)) _C.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS = 17 # 17 is the number of keypoints in COCO. # Images with too few (or no) keypoints are excluded from training. _C.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE = 1 # Normalize by the total number of visible keypoints in the minibatch if True. # Otherwise, normalize by the total number of keypoints that could ever exist # in the minibatch. # The keypoint softmax loss is only calculated on visible keypoints. # Since the number of visible keypoints can vary significantly between # minibatches, this has the effect of up-weighting the importance of # minibatches with few visible keypoints. (Imagine the extreme case of # only one visible keypoint versus N: in the case of N, each one # contributes 1/N to the gradient compared to the single keypoint # determining the gradient direction). Instead, we can normalize the # loss by the total number of keypoints, if it were the case that all # keypoints were visible in a full minibatch. (Returning to the example, # this means that the one visible keypoint contributes as much as each # of the N keypoints.) _C.MODEL.ROI_KEYPOINT_HEAD.NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS = True # Multi-task loss weight to use for keypoints # Recommended values: # - use 1.0 if NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS is True # - use 4.0 if NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS is False _C.MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT = 1.0 # Type of pooling operation applied to the incoming feature map for each RoI _C.MODEL.ROI_KEYPOINT_HEAD.POOLER_TYPE = "ROIAlignV2" # ---------------------------------------------------------------------------- # # Semantic Segmentation Head # ---------------------------------------------------------------------------- # _C.MODEL.SEM_SEG_HEAD = CN() _C.MODEL.SEM_SEG_HEAD.NAME = "SemSegFPNHead" _C.MODEL.SEM_SEG_HEAD.IN_FEATURES = ["p2", "p3", "p4", "p5"] # Label in the semantic segmentation ground truth that is ignored, i.e., no loss is calculated for # the correposnding pixel. _C.MODEL.SEM_SEG_HEAD.IGNORE_VALUE = 255 # Number of classes in the semantic segmentation head _C.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 54 # Number of channels in the 3x3 convs inside semantic-FPN heads. _C.MODEL.SEM_SEG_HEAD.CONVS_DIM = 128 # Outputs from semantic-FPN heads are up-scaled to the COMMON_STRIDE stride. _C.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4 # Normalization method for the convolution layers. Options: "" (no norm), "GN". _C.MODEL.SEM_SEG_HEAD.NORM = "GN" _C.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT = 1.0 _C.MODEL.PANOPTIC_FPN = CN() # Scaling of all losses from instance detection / segmentation head. _C.MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT = 1.0 # options when combining instance & semantic segmentation outputs _C.MODEL.PANOPTIC_FPN.COMBINE = CN({"ENABLED": True}) # "COMBINE.ENABLED" is deprecated & not used _C.MODEL.PANOPTIC_FPN.COMBINE.OVERLAP_THRESH = 0.5 _C.MODEL.PANOPTIC_FPN.COMBINE.STUFF_AREA_LIMIT = 4096 _C.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = 0.5 # ---------------------------------------------------------------------------- # # RetinaNet Head # ---------------------------------------------------------------------------- # _C.MODEL.RETINANET = CN() # This is the number of foreground classes. _C.MODEL.RETINANET.NUM_CLASSES = 80 _C.MODEL.RETINANET.IN_FEATURES = ["p3", "p4", "p5", "p6", "p7"] # Convolutions to use in the cls and bbox tower # NOTE: this doesn't include the last conv for logits _C.MODEL.RETINANET.NUM_CONVS = 4 # IoU overlap ratio [bg, fg] for labeling anchors. # Anchors with < bg are labeled negative (0) # Anchors with >= bg and < fg are ignored (-1) # Anchors with >= fg are labeled positive (1) _C.MODEL.RETINANET.IOU_THRESHOLDS = [0.4, 0.5] _C.MODEL.RETINANET.IOU_LABELS = [0, -1, 1] # Prior prob for rare case (i.e. foreground) at the beginning of training. # This is used to set the bias for the logits layer of the classifier subnet. # This improves training stability in the case of heavy class imbalance. _C.MODEL.RETINANET.PRIOR_PROB = 0.01 # Inference cls score threshold, only anchors with score > INFERENCE_TH are # considered for inference (to improve speed) _C.MODEL.RETINANET.SCORE_THRESH_TEST = 0.05 # Select topk candidates before NMS _C.MODEL.RETINANET.TOPK_CANDIDATES_TEST = 1000 _C.MODEL.RETINANET.NMS_THRESH_TEST = 0.5 # Weights on (dx, dy, dw, dh) for normalizing Retinanet anchor regression targets _C.MODEL.RETINANET.BBOX_REG_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Loss parameters _C.MODEL.RETINANET.FOCAL_LOSS_GAMMA = 2.0 _C.MODEL.RETINANET.FOCAL_LOSS_ALPHA = 0.25 _C.MODEL.RETINANET.SMOOTH_L1_LOSS_BETA = 0.1 # Options are: "smooth_l1", "giou" _C.MODEL.RETINANET.BBOX_REG_LOSS_TYPE = "smooth_l1" # One of BN, SyncBN, FrozenBN, GN # Only supports GN until unshared norm is implemented _C.MODEL.RETINANET.NORM = "" # ---------------------------------------------------------------------------- # # ResNe[X]t options (ResNets = {ResNet, ResNeXt} # Note that parts of a resnet may be used for both the backbone and the head # These options apply to both # ---------------------------------------------------------------------------- # _C.MODEL.RESNETS = CN() _C.MODEL.RESNETS.DEPTH = 50 _C.MODEL.RESNETS.OUT_FEATURES = ["res4"] # res4 for C4 backbone, res2..5 for FPN backbone # Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt _C.MODEL.RESNETS.NUM_GROUPS = 1 # Options: FrozenBN, GN, "SyncBN", "BN" _C.MODEL.RESNETS.NORM = "FrozenBN" # Baseline width of each group. # Scaling this parameters will scale the width of all bottleneck layers. _C.MODEL.RESNETS.WIDTH_PER_GROUP = 64 # Place the stride 2 conv on the 1x1 filter # Use True only for the original MSRA ResNet; use False for C2 and Torch models _C.MODEL.RESNETS.STRIDE_IN_1X1 = True # Apply dilation in stage "res5" _C.MODEL.RESNETS.RES5_DILATION = 1 # Output width of res2. Scaling this parameters will scale the width of all 1x1 convs in ResNet # For R18 and R34, this needs to be set to 64 _C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256 _C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64 # Apply Deformable Convolution in stages # Specify if apply deform_conv on Res2, Res3, Res4, Res5 _C.MODEL.RESNETS.DEFORM_ON_PER_STAGE = [False, False, False, False] # Use True to use modulated deform_conv (DeformableV2, https://arxiv.org/abs/1811.11168); # Use False for DeformableV1. _C.MODEL.RESNETS.DEFORM_MODULATED = False # Number of groups in deformable conv. _C.MODEL.RESNETS.DEFORM_NUM_GROUPS = 1 # ---------------------------------------------------------------------------- # # Solver # ---------------------------------------------------------------------------- # _C.SOLVER = CN() # See detectron2/solver/build.py for LR scheduler options _C.SOLVER.LR_SCHEDULER_NAME = "WarmupMultiStepLR" _C.SOLVER.MAX_ITER = 40000 _C.SOLVER.BASE_LR = 0.001 _C.SOLVER.MOMENTUM = 0.9 _C.SOLVER.NESTEROV = False _C.SOLVER.WEIGHT_DECAY = 0.0001 # The weight decay that's applied to parameters of normalization layers # (typically the affine transformation) _C.SOLVER.WEIGHT_DECAY_NORM = 0.0 _C.SOLVER.GAMMA = 0.1 # The iteration number to decrease learning rate by GAMMA. _C.SOLVER.STEPS = (30000,) _C.SOLVER.WARMUP_FACTOR = 1.0 / 1000 _C.SOLVER.WARMUP_ITERS = 1000 _C.SOLVER.WARMUP_METHOD = "linear" # Save a checkpoint after every this number of iterations _C.SOLVER.CHECKPOINT_PERIOD = 5000 # Number of images per batch across all machines. This is also the number # of training images per step (i.e. per iteration). If we use 16 GPUs # and IMS_PER_BATCH = 32, each GPU will see 2 images per batch. # May be adjusted automatically if REFERENCE_WORLD_SIZE is set. _C.SOLVER.IMS_PER_BATCH = 16 # The reference number of workers (GPUs) this config is meant to train with. # It takes no effect when set to 0. # With a non-zero value, it will be used by DefaultTrainer to compute a desired # per-worker batch size, and then scale the other related configs (total batch size, # learning rate, etc) to match the per-worker batch size. # See documentation of `DefaultTrainer.auto_scale_workers` for details: _C.SOLVER.REFERENCE_WORLD_SIZE = 0 # Detectron v1 (and previous detection code) used a 2x higher LR and 0 WD for # biases. This is not useful (at least for recent models). You should avoid # changing these and they exist only to reproduce Detectron v1 training if # desired. _C.SOLVER.BIAS_LR_FACTOR = 1.0 _C.SOLVER.WEIGHT_DECAY_BIAS = _C.SOLVER.WEIGHT_DECAY # Gradient clipping _C.SOLVER.CLIP_GRADIENTS = CN({"ENABLED": False}) # Type of gradient clipping, currently 2 values are supported: # - "value": the absolute values of elements of each gradients are clipped # - "norm": the norm of the gradient for each parameter is clipped thus # affecting all elements in the parameter _C.SOLVER.CLIP_GRADIENTS.CLIP_TYPE = "value" # Maximum absolute value used for clipping gradients _C.SOLVER.CLIP_GRADIENTS.CLIP_VALUE = 1.0 # Floating point number p for L-p norm to be used with the "norm" # gradient clipping type; for L-inf, please specify .inf _C.SOLVER.CLIP_GRADIENTS.NORM_TYPE = 2.0 # Enable automatic mixed precision for training # Note that this does not change model's inference behavior. # To use AMP in inference, run inference under autocast() _C.SOLVER.AMP = CN({"ENABLED": False}) # ---------------------------------------------------------------------------- # # Specific test options # ---------------------------------------------------------------------------- # _C.TEST = CN() # For end-to-end tests to verify the expected accuracy. # Each item is [task, metric, value, tolerance] # e.g.: [['bbox', 'AP', 38.5, 0.2]] _C.TEST.EXPECTED_RESULTS = [] # The period (in terms of steps) to evaluate the model during training. # Set to 0 to disable. _C.TEST.EVAL_PERIOD = 0 # The sigmas used to calculate keypoint OKS. See http://cocodataset.org/#keypoints-eval # When empty, it will use the defaults in COCO. # Otherwise it should be a list[float] with the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. _C.TEST.KEYPOINT_OKS_SIGMAS = [] # Maximum number of detections to return per image during inference (100 is # based on the limit established for the COCO dataset). _C.TEST.DETECTIONS_PER_IMAGE = 100 _C.TEST.AUG = CN({"ENABLED": False}) _C.TEST.AUG.MIN_SIZES = (400, 500, 600, 700, 800, 900, 1000, 1100, 1200) _C.TEST.AUG.MAX_SIZE = 4000 _C.TEST.AUG.FLIP = True _C.TEST.PRECISE_BN = CN({"ENABLED": False}) _C.TEST.PRECISE_BN.NUM_ITER = 200 # ---------------------------------------------------------------------------- # # Misc options # ---------------------------------------------------------------------------- # # Directory where output files are written _C.OUTPUT_DIR = "./output" # Set seed to negative to fully randomize everything. # Set seed to positive to use a fixed seed. Note that a fixed seed increases # reproducibility but does not guarantee fully deterministic behavior. # Disabling all parallelism further increases reproducibility. _C.SEED = -1 # Benchmark different cudnn algorithms. # If input images have very different sizes, this option will have large overhead # for about 10k iterations. It usually hurts total time, but can benefit for certain models. # If input images have the same or similar sizes, benchmark is often helpful. _C.CUDNN_BENCHMARK = False # The period (in terms of steps) for minibatch visualization at train time. # Set to 0 to disable. _C.VIS_PERIOD = 0 # global config is for quick hack purposes. # You can set them in command line or config files, # and access it with: # # from detectron2.config import global_cfg # print(global_cfg.HACK) # # Do not commit any configs into it. _C.GLOBAL = CN() _C.GLOBAL.HACK = 1.0