import numpy as np import gradio as gr import cv2 import os import shutil import re import torch import csv import time from src.sts.demo.sts import handle_sts from src.ir.ir import handle_ir from src.ir.src.models.tc_classifier import TCClassifier from src.tracker.signboard_track import SignboardTracker from omegaconf import DictConfig from hydra import compose, initialize signboardTracker = SignboardTracker() tracking_result_dir = "" output_track_format = "mp4v" output_track = "" output_sts = "" video_dir = "" vd_dir = "" labeling_dir = "" frame_out = {} rs = {} results = [] # with initialize(version_base=None, config_path="src/ir/configs", job_name="ir"): # config = compose(config_name="test") # config: DictConfig # model_ir = TCClassifier(config.model.train.model_name, # config.model.train.n_classes, # config.model.train.lr, # config.model.train.scheduler_type, # config.model.train.max_steps, # config.model.train.weight_decay, # config.model.train.classifier_dropout, # config.model.train.mixout, # config.model.train.freeze_encoder) # model_ir = model_ir.load_from_checkpoint(checkpoint_path=config.ckpt_path, map_location=torch.device("cuda")) def create_dir(list_dir_path): for dir_path in list_dir_path: if not os.path.isdir(dir_path): os.makedirs(dir_path) def get_meta_from_video(input_video): if input_video is not None: video_name = os.path.basename(input_video).split('.')[0] global video_dir video_dir = os.path.join("static/videos/", f"{video_name}") global vd_dir vd_dir = os.path.join(video_dir, os.path.basename(input_video)) global output_track output_track = os.path.join(video_dir,"original") global tracking_result_dir tracking_result_dir = os.path.join(video_dir,"track/cropped") global output_sts output_sts = os.path.join(video_dir,"track/sts") global labeling_dir labeling_dir = os.path.join(video_dir,"track/labeling") if os.path.isdir(video_dir): return None else: create_dir([output_track, video_dir, os.path.join(video_dir, "track/segment"), output_sts, tracking_result_dir, labeling_dir]) # initialize the video stream video_cap = cv2.VideoCapture(input_video) # grab the width, height, and fps of the frames in the video stream. frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(video_cap.get(cv2.CAP_PROP_FPS)) #tổng Fps # total_frames = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT)) # print(total_frames) # # Tính tổng số giây trong video # total_seconds = total_frames / video_cap.get(cv2.CAP_PROP_FPS) # print(total_seconds) # initialize the FourCC and a video writer object fourcc = cv2.VideoWriter_fourcc(*"mp4v") output = cv2.VideoWriter(vd_dir, fourcc, fps, (frame_width, frame_height)) while True: success, frame = video_cap.read() # write the frame to the output file if success == True: output.write(frame) else: break # print(fps) # return gr.Slider(1, fps, value=4, label="FPS",step=1, info="Choose between 1 and {fps}", interactive=True) return gr.Textbox(value=fps) def get_signboard(evt: gr.SelectData): name_fr = int(evt.index) + 1 ids_dir = tracking_result_dir all_ids = os.listdir(ids_dir) gallery=[] for i in all_ids: fr_id = str(name_fr) al = re.search("[\d]*_"+fr_id+".png", i) if al: id_dir = os.path.join(ids_dir, i) gallery.append(id_dir) gallery = sorted(gallery) return gallery, name_fr def tracking(fps_target): start = time.time() fps_target = int(fps_target) global results results = signboardTracker.inference_signboard(fps_target, vd_dir, output_track, output_track_format, tracking_result_dir)[0] # print("result", results) fd = [] global frame_out list_id = [] with open(os.path.join(video_dir, "track/label.csv"), 'w', newline='') as file: writer = csv.writer(file) writer.writerow(["Signboard", "Frame", "Text"]) for frame, values in results.items(): frame_dir = os.path.join(output_track, f"{frame}.jpg") # segment = os.path.join(video_dir,"segment/" + f"{frame}.jpg") list_boxs = [] full = [] list_id_tmp = [] # print("values", values) for value in values: list_boxs.append(value['box']) list_id_tmp.append(value['id']) _, dict_rec_sign_out = handle_sts(frame_dir, labeling_dir, list_boxs, list_id_tmp) # predicted = handle_ir(frame_dir, dict_rec_sign_out, os.path.join(video_dir, "ir")) # print(predicted) # fd.append(frame_dir) # frame_out[frame] = full list_id.extend(list_id_tmp) list_id = list(set(list_id)) # print(list_id) print(time.time()-start) return gr.Dropdown(label="signboard",choices=list_id, interactive=True) def get_select_index(img_id, evt: gr.SelectData): ids_dir = tracking_result_dir # print(ids_dir) all_ids = os.listdir(ids_dir) gallery = [] for i in all_ids: fr_id = str(img_id) al = re.search("[\d]*_"+fr_id+".png", i) if al: id_dir = os.path.join(ids_dir, i) gallery.append(id_dir) gallery = sorted(gallery) gallery_id=[] id_name = gallery[evt.index] id = os.path.basename(id_name).split(".")[0].split("_")[0] for i in all_ids: al = re.search("^" +id + "_[\d]*.png", i) if al: id_dir = os.path.join(ids_dir, i) gallery_id.append(id_dir) gallery_id = sorted(gallery_id) return gallery_id id_glb = None def select_id(evt: gr.SelectData): choice=[] global id_glb id_glb = evt.value for key, values in results.items(): for value in values: if value['id'] == evt.value: choice.append(int(key)) return gr.Dropdown(label="frame", choices=choice, interactive=True) import pandas as pd frame_glb = None def select_frame(evt: gr.SelectData): full_img = os.path.join(output_track, str(evt.value) + ".jpg") crop_img = os.path.join(tracking_result_dir, str(id_glb) + "_" + str(evt.value) + ".png") global frame_glb frame_glb = evt.value data = pd.read_csv(os.path.join(labeling_dir, str(id_glb) + "_" + str(frame_glb) + '.csv'), header=0) return full_img, crop_img, data def get_data(dtfr): print(dtfr) # df = pd.read_csv(os.path.join(video_dir, "track/label.csv")) # for i, row in df.iterrows(): # if str(row["Signboard"]) == str(id_tmp) and str(row["Frame"]) == str(frame_tmp): # # print(row["Text"]) # df_new = df.replace(str(row["Text"]), str(labeling)) # print(df_new) dtfr.to_csv(os.path.join(labeling_dir, str(id_glb) + "_" + str(frame_glb) + '.csv'), index=False, header=True) return def seg_track_app(): ########################################################## ###################### Front-end ######################## ########################################################## with gr.Blocks(css=".gradio-container {background-color: white}") as demo: gr.Markdown( '''