# Copyright (c) Facebook, Inc. and its affiliates. import io import numpy as np import torch from detectron2 import model_zoo from detectron2.data import DatasetCatalog from detectron2.data.detection_utils import read_image from detectron2.modeling import build_model from detectron2.structures import Boxes, Instances from detectron2.utils.file_io import PathManager """ Internal utilities for tests. Don't use except for writing tests. """ def get_model_no_weights(config_path): """ Like model_zoo.get, but do not load any weights (even pretrained) """ cfg = model_zoo.get_config(config_path) if not torch.cuda.is_available(): cfg.MODEL.DEVICE = "cpu" return build_model(cfg) def random_boxes(num_boxes, max_coord=100, device="cpu"): """ Create a random Nx4 boxes tensor, with coordinates < max_coord. """ boxes = torch.rand(num_boxes, 4, device=device) * (max_coord * 0.5) boxes.clamp_(min=1.0) # tiny boxes cause numerical instability in box regression # Note: the implementation of this function in torchvision is: # boxes[:, 2:] += torch.rand(N, 2) * 100 # but it does not guarantee non-negative widths/heights constraints: # boxes[:, 2] >= boxes[:, 0] and boxes[:, 3] >= boxes[:, 1]: boxes[:, 2:] += boxes[:, :2] return boxes def get_sample_coco_image(tensor=True): """ Args: tensor (bool): if True, returns 3xHxW tensor. else, returns a HxWx3 numpy array. Returns: an image, in BGR color. """ try: file_name = DatasetCatalog.get("coco_2017_val_100")[0]["file_name"] if not PathManager.exists(file_name): raise FileNotFoundError() except IOError: # for public CI to run file_name = "http://images.cocodataset.org/train2017/000000000009.jpg" ret = read_image(file_name, format="BGR") if tensor: ret = torch.from_numpy(np.ascontiguousarray(ret.transpose(2, 0, 1))) return ret def convert_scripted_instances(instances): """ Convert a scripted Instances object to a regular :class:`Instances` object """ ret = Instances(instances.image_size) for name in instances._field_names: val = getattr(instances, "_" + name, None) if val is not None: ret.set(name, val) return ret def assert_instances_allclose(input, other, *, rtol=1e-5, msg="", size_as_tensor=False): """ Args: input, other (Instances): size_as_tensor: compare image_size of the Instances as tensors (instead of tuples). Useful for comparing outputs of tracing. """ if not isinstance(input, Instances): input = convert_scripted_instances(input) if not isinstance(other, Instances): other = convert_scripted_instances(other) if not msg: msg = "Two Instances are different! " else: msg = msg.rstrip() + " " size_error_msg = msg + f"image_size is {input.image_size} vs. {other.image_size}!" if size_as_tensor: assert torch.equal( torch.tensor(input.image_size), torch.tensor(other.image_size) ), size_error_msg else: assert input.image_size == other.image_size, size_error_msg fields = sorted(input.get_fields().keys()) fields_other = sorted(other.get_fields().keys()) assert fields == fields_other, msg + f"Fields are {fields} vs {fields_other}!" for f in fields: val1, val2 = input.get(f), other.get(f) if isinstance(val1, Boxes): # boxes in the range of O(100) and can have a larger tolerance assert torch.allclose(val1.tensor, val2.tensor, atol=100 * rtol), ( msg + f"Field {f} differs too much!" ) elif isinstance(val1, torch.Tensor): if val1.dtype.is_floating_point: mag = torch.abs(val1).max().cpu().item() assert torch.allclose(val1, val2, atol=mag * rtol), ( msg + f"Field {f} differs too much!" ) else: assert torch.equal(val1, val2), msg + f"Field {f} is different!" else: raise ValueError(f"Don't know how to compare type {type(val1)}") def reload_script_model(module): """ Save a jit module and load it back. Similar to the `getExportImportCopy` function in torch/testing/ """ buffer = io.BytesIO() torch.jit.save(module, buffer) buffer.seek(0) return torch.jit.load(buffer)