import streamlit as st import transformers # Replace "facebook/bart-base" with the desired LLM identifier from Hugging Face model_name = "facebook/bart-base" llm = transformers.pipeline("text-generation", model=model_name) # Display the logo and title st.image("logo.jpg", width=300) st.title("Coach Virtual PRODI") # Initialize a session state variable for history if it doesn't exist if 'history' not in st.session_state: st.session_state['history'] = [] # Function to update the conversation history def update_history(user_input, ai_response): st.session_state['history'].append(("User", user_input)) st.session_state['history'].append(("AI", ai_response)) # Display the conversation history for speaker, text in st.session_state['history']: if speaker == "User": st.text_input("Usuario", value=text, disabled=True) else: st.text_area("PRODI", value=text, height=75, disabled=True) # Chat input for user prompt user_input = st.chat_input("¿Cómo te puedo ayudar hoy?") if user_input: with st.spinner("Generando respuesta..."): # Get the AI's response using the loaded llm object ai_response = llm(user_input, max_length=1000, do_sample=True, top_k=50, top_p=0.9)["generated_text"][0] # Update the conversation history update_history(user_input, ai_response) # Display the AI's response st.write(ai_response)