import tweepy as tw import streamlit as st import pandas as pd import torch import numpy as np import regex as re import pysentimiento import geopy from pysentimiento.preprocessing import preprocess_tweet from geopy.geocoders import Nominatim from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021') model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021") import torch if torch.cuda.is_available(): device = torch.device( "cuda") print('I will use the GPU:', torch.cuda.get_device_name(0)) else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") consumer_key = "BjipwQslVG4vBdy4qK318KnoA" consumer_secret = "3fzL70v9faklrPgvTi3zbofw9rwk92fgGdtAslFkFYt8kGmqBJ" access_token = "1217853705086799872-Y5zEChpTeKccuLY3XJRXDPPZhNrlba" access_token_secret = "pqQ5aFSJxzJ2xnI6yhVtNjQO36FOu8DBOH6DtUrPAU54J" auth = tw.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tw.API(auth, wait_on_rate_limit=True) def preprocess(text): #text=text.lower() # remove hyperlinks text = re.sub(r'https?:\/\/.*[\r\n]*', '', text) text = re.sub(r'http?:\/\/.*[\r\n]*', '', text) #Replace &, <, > with &,<,> respectively text=text.replace(r'&?',r'and') text=text.replace(r'<',r'<') text=text.replace(r'>',r'>') #remove hashtag sign #text=re.sub(r"#","",text) #remove mentions text = re.sub(r"(?:\@)\w+", '', text) #text=re.sub(r"@","",text) #remove non ascii chars text=text.encode("ascii",errors="ignore").decode() #remove some puncts (except . ! ?) text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text) text=re.sub(r'[!]+','!',text) text=re.sub(r'[?]+','?',text) text=re.sub(r'[.]+','.',text) text=re.sub(r"'","",text) text=re.sub(r"\(","",text) text=re.sub(r"\)","",text) text=" ".join(text.split()) return text def highlight_survived(s): return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s) def color_survived(val): color = 'red' if val=='Sexista' else 'white' return f'background-color: {color}' st.set_page_config(layout="wide") st.markdown('',unsafe_allow_html=True) colT1,colT2 = st.columns([2,8]) with colT2: # st.title('Analisis de comentarios sexistas en Twitter') st.markdown(""" """, unsafe_allow_html=True) st.markdown('
Análisis de comentarios sexistas en Twitter
', unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) def analizar_tweets(search_words, number_of_tweets ): tweets = api.user_timeline(screen_name = search_words, count= number_of_tweets) tweet_list = [i.text for i in tweets] text= pd.DataFrame(tweet_list) text[0] = text[0].apply(preprocess_tweet) text1=text[0].values indices1=tokenizer.batch_encode_plus(text1.tolist(), max_length=128,add_special_tokens=True, return_attention_mask=True,pad_to_max_length=True,truncation=True) input_ids1=indices1["input_ids"] attention_masks1=indices1["attention_mask"] prediction_inputs1= torch.tensor(input_ids1) prediction_masks1 = torch.tensor(attention_masks1) batch_size = 25 # Create the DataLoader. prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1) prediction_sampler1 = SequentialSampler(prediction_data1) prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size) #print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1))) # Put model in evaluation mode model.eval() # Tracking variables predictions = [] for batch in prediction_dataloader1: batch = tuple(t.to(device) for t in batch) # Unpack the inputs from our dataloader b_input_ids1, b_input_mask1 = batch #Telling the model not to compute or store gradients, saving memory and # speeding up prediction with torch.no_grad(): # Forward pass, calculate logit predictions outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1) logits1 = outputs1[0] # Move logits and labels to CPU logits1 = logits1.detach().cpu().numpy() # Store predictions and true labels predictions.append(logits1) #flat_predictions = [item for sublist in predictions for item in sublist] flat_predictions = [item for sublist in predictions for item in sublist] flat_predictions = np.argmax(flat_predictions, axis=1).flatten() probability = np.amax(logits1,axis=1).flatten() Tweets =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words] df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , 'Prediccion','Probabilidad']) df['Prediccion']= np.where(df['Prediccion']== 0, 'No Sexista', 'Sexista') df['Tweets'] = df['Tweets'].str.replace('RT|@', '') #df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x)) tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion'])) return tabla def analizar_frase(frase): #palabra = frase.split() palabra = [frase] indices1=tokenizer.batch_encode_plus(palabra,max_length=128,add_special_tokens=True, return_attention_mask=True, pad_to_max_length=True, truncation=True) input_ids1=indices1["input_ids"] attention_masks1=indices1["attention_mask"] prediction_inputs1= torch.tensor(input_ids1) prediction_masks1 = torch.tensor(attention_masks1) batch_size = 25 prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1) prediction_sampler1 = SequentialSampler(prediction_data1) prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size) model.eval() predictions = [] # Predict for batch in prediction_dataloader1: batch = tuple(t.to(device) for t in batch) # Unpack the inputs from our dataloader b_input_ids1, b_input_mask1 = batch # Telling the model not to compute or store gradients, saving memory and # speeding up prediction with torch.no_grad(): # Forward pass, calculate logit predictions outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1) logits1 = outputs1[0] # Move logits and labels to CPU logits1 = logits1.detach().cpu().numpy() # Store predictions and true labels predictions.append(logits1) flat_predictions = [item for sublist in predictions for item in sublist] flat_predictions = np.argmax(flat_predictions, axis=1).flatten() tokens = tokenizer.tokenize(frase) # Convertir los tokens a un formato compatible con el modelo input_ids = tokenizer.convert_tokens_to_ids(tokens) attention_masks = [1] * len(input_ids) # Pasar los tokens al modelo outputs = model(torch.tensor([input_ids]), token_type_ids=None, attention_mask=torch.tensor([attention_masks])) scores = outputs[0] #prediccion = scores.argmax(dim=1).item() # Obtener la probabilidad de que la frase sea "sexista" probabilidad_sexista = scores.amax(dim=1).item() #print(probabilidad_sexista) # Crear un Dataframe text= pd.DataFrame({'Frase': [frase], 'Prediccion':[flat_predictions], 'Probabilidad':[probabilidad_sexista]}) text['Prediccion'] = np.where(text['Prediccion'] == 0 , 'No Sexista', 'Sexista') tabla = st.table(text.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion'])) return tabla def tweets_localidad(buscar_localidad): geolocator = Nominatim(user_agent="nombre_del_usuario") location = geolocator.geocode(buscar_localidad) radius = "200km" tweets = api.search(lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50) #for tweet in tweets: # print(tweet.text) tweet_list = [i.text for i in tweets] text= pd.DataFrame(tweet_list) text[0] = text[0].apply(preprocess_tweet) text1=text[0].values print(text1) indices1=tokenizer.batch_encode_plus(text1.tolist(), max_length=128,add_special_tokens=True, return_attention_mask=True,pad_to_max_length=True,truncation=True) input_ids1=indices1["input_ids"] attention_masks1=indices1["attention_mask"] prediction_inputs1= torch.tensor(input_ids1) prediction_masks1 = torch.tensor(attention_masks1) batch_size = 25 # Create the DataLoader. prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1) prediction_sampler1 = SequentialSampler(prediction_data1) prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size) #print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1))) # Put model in evaluation mode model.eval() # Tracking variables predictions = [] for batch in prediction_dataloader1: batch = tuple(t.to(device) for t in batch) # Unpack the inputs from our dataloader b_input_ids1, b_input_mask1 = batch #Telling the model not to compute or store gradients, saving memory and # speeding up prediction with torch.no_grad(): # Forward pass, calculate logit predictions outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1) logits1 = outputs1[0] # Move logits and labels to CPU logits1 = logits1.detach().cpu().numpy() # Store predictions and true labels predictions.append(logits1) #flat_predictions = [item for sublist in predictions for item in sublist] flat_predictions = [item for sublist in predictions for item in sublist] flat_predictions = np.argmax(flat_predictions, axis=1).flatten() probability = np.amax(logits1,axis=1).flatten() Tweets =['Últimos 50 Tweets'+' de '+ buscar_localidad] df = pd.DataFrame(list(zip(text1, flat_predictions,probability)), columns = ['Tweets' , 'Prediccion','Probabilidad']) df['Prediccion']= np.where(df['Prediccion']== 0, 'No Sexista', 'Sexista') #df['Tweets'] = df['Tweets'].str.replace('RT|@', '') #df_filtrado = df[df["Sexista"] == 'Sexista'] #df['Tweets'] = df['Tweets'].apply(lambda x: re.sub(r'[:;][-o^]?[)\]DpP3]|[(/\\]|[\U0001f600-\U0001f64f]|[\U0001f300-\U0001f5ff]|[\U0001f680-\U0001f6ff]|[\U0001f1e0-\U0001f1ff]','', x)) tabla = st.table(df.reset_index(drop=True).head(50).style.applymap(color_survived, subset=['Prediccion'])) df_sexista = df[df['Sexista']=="Sexista"] df_no_sexista = df[df['Probabilidad'] > 0] sexista = len(df_sexista) no_sexista = len(df_no_sexista) # Crear un gráfico de barras labels = ['Sexista ', ' No sexista'] counts = [sexista, no_sexista] plt.bar(labels, counts) plt.xlabel('Categoría') plt.ylabel('Cantidad de tweets') plt.title('Cantidad de tweets sexistas y no sexistas') plt.show() return df def run(): with st.form("my_form"): col,buff1, buff2 = st.columns([2,2,1]) st.write("Escoja una Opción") search_words = col.text_input("Introduzca el termino, usuario o localidad para analizar y pulse el check correspondiente") number_of_tweets = col.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,10) termino=st.checkbox('Término') usuario=st.checkbox('Usuario') localidad=st.checkbox('Localidad') submit_button = col.form_submit_button(label='Analizar') error =False if submit_button: # Condición para el caso de que esten dos check seleccionados if ( termino == False and usuario == False and localidad == False): st.text('Error no se ha seleccionado ningun check') error=True elif ( termino == True and usuario == True and localidad == True): st.text('Error se han seleccionado varios check') error=True if (error == False): if (termino): analizar_frase(search_words) elif (usuario): analizar_tweets(search_words,number_of_tweets) elif (localidad): tweets_localidad(search_words) run()