### Stolen from https://huggingface.co/spaces/Datatrooper/zero-shot-image-classification/tree/main from turtle import title import gradio as gr from transformers import pipeline import numpy as np from PIL import Image pipe = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32") images="dog.jpg" def shot(image, labels_text): PIL_image = Image.fromarray(np.uint8(image)).convert('RGB') labels = labels_text.split(",") res = pipe(images=PIL_image, candidate_labels=labels, hypothesis_template= "This is a photo of a {}") return {dic["label"]: dic["score"] for dic in res} iface = gr.Interface(shot, ["image", "text"], "label", examples=[["caesar.jpg", "dog,cat,bird"], ["benny.jpg", "dog,cat,bird"], ["turtle.jpg", "belgium,colombia,bird,turtle"]]) iface.launch()