import gradio as gr import pandas as pd from transformers import AutoImageProcessor, AutoModelForObjectDetection from PIL import Image, ImageDraw import torch image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small') model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small') colors = ["red", "orange", "yellow", "green", "blue", "indigo", "violet", "brown", "black", "slategray", ] def detect(image): inputs = image_processor(images=image, return_tensors="pt") outputs = model(**inputs) # convert outputs to COCO API target_sizes = torch.tensor([image.size[::-1]]) results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0] draw = ImageDraw.Draw(image) # label and the count counts = {} for score, label in zip(results["scores"], results["labels"]): label_name = model.config.id2label[label.item()] if label_name not in counts: counts[label_name] = 0 counts[label_name] += 1 count_results = {k: v for k, v in (sorted(counts.items(), key=lambda item: item[1], reverse=True)[:10])} label2color = {} for idx, label in enumerate(count_results): label2color[label] = colors[idx] for label, box in zip(results["labels"], results["boxes"]): label_name = model.config.id2label[label.item()] if label_name in count_results: box = [round(i, 4) for i in box.tolist()] x1, y1, x2, y2 = tuple(box) draw.rectangle((x1, y1, x2, y2), outline=label2color[label_name], width=2) draw.text((x1, y1), label_name, fill="white") df = pd.DataFrame({ 'label': [label for label in count_results], 'counts': [counts[label] for label in count_results] }) return image, df, count_results demo = gr.Interface( fn=detect, inputs=[gr.inputs.Image(label="Input image", type="pil")], outputs=["image", gr.BarPlot(x="label", y="counts", x_title="Labels", y_title="Counts"), gr.Textbox()], title="Object Counts in Image" ) demo.launch()