import pandas as pd import numpy as np import sqlite3, torch, json, re, os, torch, itertools, nltk from ast import literal_eval as leval from tqdm.auto import tqdm from utils.verbalisation_module import VerbModule from utils.sentence_retrieval_module import SentenceRetrievalModule from utils.textual_entailment_module import TextualEntailmentModule from importlib import reload from html.parser import HTMLParser from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm import gradio as gr from bs4 import BeautifulSoup from cleantext import clean def verbalisation(claim_df): verb_module = VerbModule() triples = [] for _, row in claim_df.iterrows(): triple = { 'subject': row['entity_label'], 'predicate': row['property_label'], 'object': row['object_label'] } triples.append(triple) claim_df['verbalisation'] = verb_module.verbalise_triples(triples) claim_df['verbalisation_unks_replaced'] = claim_df['verbalisation'].apply(verb_module.replace_unks_on_sentence) claim_df['verbalisation_unks_replaced_then_dropped'] = claim_df['verbalisation'].apply(lambda x: verb_module.replace_unks_on_sentence(x, empty_after=True)) return claim_df def setencesSpliter(verbalised_claims_df_final, reference_text_df, update_progress): join_df = pd.merge(verbalised_claims_df_final, reference_text_df[['reference_id', 'url', 'html']], on='reference_id', how='left') SS_df = join_df[['reference_id','url','verbalisation', 'html']].copy() def clean_html(html_content): soup = BeautifulSoup(html_content, 'html.parser') text = soup.get_text(separator=' ', strip=True) cleaned_text = clean(text, fix_unicode=True, to_ascii=True, lower=False, no_line_breaks=False, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=False, no_digits=False, no_currency_symbols=True, no_punct=False, replace_with_url="", replace_with_email="", replace_with_phone_number="", replace_with_number="", replace_with_digit="", replace_with_currency_symbol="") return cleaned_text def split_into_sentences(text): sentences = nltk.sent_tokenize(text) return sentences def slide_sentences(sentences, window_size=2): if len(sentences) < window_size: return [" ".join(sentences)] return [" ".join(sentences[i:i + window_size]) for i in range(len(sentences) - window_size + 1)] SS_df['html2text'] = SS_df['html'].apply(clean_html) SS_df['nlp_sentences'] = SS_df['html2text'].apply(split_into_sentences) SS_df['nlp_sentences_slide_2'] = SS_df['nlp_sentences'].apply(slide_sentences) return SS_df[['reference_id','verbalisation','url','nlp_sentences','nlp_sentences_slide_2']] def evidenceSelection(splited_sentences_from_html, BATCH_SIZE, N_TOP_SENTENCES): sr_module = SentenceRetrievalModule(max_len=512) sentence_relevance_df = splited_sentences_from_html.copy() sentence_relevance_df.rename(columns={'verbalisation': 'final_verbalisation'}, inplace=True) def chunks(l, n): n = max(1, n) return [l[i:i + n] for i in range(0, len(l), n)] def compute_scores(column_name): all_outputs = [] for _, row in tqdm(sentence_relevance_df.iterrows(), total=sentence_relevance_df.shape[0]): outputs = [] for batch in chunks(row[column_name], BATCH_SIZE): batch_outputs = sr_module.score_sentence_pairs([(row['final_verbalisation'], sentence) for sentence in batch]) outputs += batch_outputs all_outputs.append(outputs) sentence_relevance_df[f'{column_name}_scores'] = pd.Series(all_outputs) assert all(sentence_relevance_df.apply(lambda x: len(x[column_name]) == len(x[f'{column_name}_scores']), axis=1)) compute_scores('nlp_sentences') compute_scores('nlp_sentences_slide_2') def get_top_n_sentences(row, column_name, n): sentences_with_scores = [{'sentence': t[0], 'score': t[1], 'sentence_id': f"{row.name}_{j}"} for j, t in enumerate(zip(row[column_name], row[f'{column_name}_scores']))] return sorted(sentences_with_scores, key=lambda x: x['score'], reverse=True)[:n] def filter_overlaps(sentences): filtered = [] for evidence in sentences: if ';' in evidence['sentence_id']: start_id, end_id = evidence['sentence_id'].split(';') if not any(start_id in e['sentence_id'].split(';') or end_id in e['sentence_id'].split(';') for e in filtered): filtered.append(evidence) else: if not any(evidence['sentence_id'] in e['sentence_id'].split(';') for e in filtered): filtered.append(evidence) return filtered def limit_sentence_length(sentence, max_length): if len(sentence) > max_length: return sentence[:max_length] + '...' return sentence nlp_sentences_TOP_N, nlp_sentences_slide_2_TOP_N, nlp_sentences_all_TOP_N = [], [], [] for _, row in tqdm(sentence_relevance_df.iterrows(), total=sentence_relevance_df.shape[0]): top_n = get_top_n_sentences(row, 'nlp_sentences', N_TOP_SENTENCES) top_n = [{'sentence': limit_sentence_length(s['sentence'], 1024), 'score': s['score'], 'sentence_id': s['sentence_id']} for s in top_n] nlp_sentences_TOP_N.append(top_n) top_n_slide_2 = get_top_n_sentences(row, 'nlp_sentences_slide_2', N_TOP_SENTENCES) top_n_slide_2 = [{'sentence': limit_sentence_length(s['sentence'], 1024), 'score': s['score'], 'sentence_id': s['sentence_id']} for s in top_n_slide_2] nlp_sentences_slide_2_TOP_N.append(top_n_slide_2) all_sentences = top_n + top_n_slide_2 all_sentences_sorted = sorted(all_sentences, key=lambda x: x['score'], reverse=True) filtered_sentences = filter_overlaps(all_sentences_sorted) filtered_sentences = [{'sentence': limit_sentence_length(s['sentence'], 1024), 'score': s['score'], 'sentence_id': s['sentence_id']} for s in filtered_sentences] nlp_sentences_all_TOP_N.append(filtered_sentences[:N_TOP_SENTENCES]) sentence_relevance_df['nlp_sentences_TOP_N'] = pd.Series(nlp_sentences_TOP_N) sentence_relevance_df['nlp_sentences_slide_2_TOP_N'] = pd.Series(nlp_sentences_slide_2_TOP_N) sentence_relevance_df['nlp_sentences_all_TOP_N'] = pd.Series(nlp_sentences_all_TOP_N) return sentence_relevance_df def textEntailment(evidence_df, SCORE_THRESHOLD): textual_entailment_df = evidence_df.copy() te_module = TextualEntailmentModule() keys = ['TOP_N', 'slide_2_TOP_N', 'all_TOP_N'] te_columns = {f'evidence_TE_prob_{key}': [] for key in keys} te_columns.update({f'evidence_TE_prob_weighted_{key}': [] for key in keys}) te_columns.update({f'evidence_TE_labels_{key}': [] for key in keys}) te_columns.update({f'claim_TE_prob_weighted_sum_{key}': [] for key in keys}) te_columns.update({f'claim_TE_label_weighted_sum_{key}': [] for key in keys}) te_columns.update({f'claim_TE_label_malon_{key}': [] for key in keys}) def process_row(row): claim = row['final_verbalisation'] results = {} for key in keys: evidence = row[f'nlp_sentences_{key}'] evidence_size = len(evidence) if evidence_size == 0: results[key] = { 'evidence_TE_prob': [], 'evidence_TE_labels': [], 'evidence_TE_prob_weighted': [], 'claim_TE_prob_weighted_sum': [0, 0, 0], 'claim_TE_label_weighted_sum': 'NOT ENOUGH INFO', 'claim_TE_label_malon': 'NOT ENOUGH INFO' } continue evidence_TE_prob = te_module.get_batch_scores( claims=[claim] * evidence_size, evidence=[e['sentence'] for e in evidence] ) evidence_TE_labels = [te_module.get_label_from_scores(s) for s in evidence_TE_prob] evidence_TE_prob_weighted = [ probs * ev['score'] for probs, ev in zip(evidence_TE_prob, evidence) if ev['score'] > SCORE_THRESHOLD ] claim_TE_prob_weighted_sum = np.sum(evidence_TE_prob_weighted, axis=0) if evidence_TE_prob_weighted else [0, 0, 0] claim_TE_label_weighted_sum = te_module.get_label_from_scores(claim_TE_prob_weighted_sum) if evidence_TE_prob_weighted else 'NOT ENOUGH INFO' claim_TE_label_malon = te_module.get_label_malon( [probs for probs, ev in zip(evidence_TE_prob, evidence) if ev['score'] > SCORE_THRESHOLD] ) results[key] = { 'evidence_TE_prob': evidence_TE_prob, 'evidence_TE_labels': evidence_TE_labels, 'evidence_TE_prob_weighted': evidence_TE_prob_weighted, 'claim_TE_prob_weighted_sum': claim_TE_prob_weighted_sum, 'claim_TE_label_weighted_sum': claim_TE_label_weighted_sum, 'claim_TE_label_malon': claim_TE_label_malon } return results for i, row in tqdm(textual_entailment_df.iterrows(), total=textual_entailment_df.shape[0]): try: result_sets = process_row(row) for key in keys: for k, v in result_sets[key].items(): te_columns[f'{k}_{key}'].append(v) except Exception as e: print(f"Error processing row {i}: {e}") print(row) raise for key in keys: for col in ['evidence_TE_prob', 'evidence_TE_prob_weighted', 'evidence_TE_labels', 'claim_TE_prob_weighted_sum', 'claim_TE_label_weighted_sum', 'claim_TE_label_malon']: textual_entailment_df[f'{col}_{key}'] = pd.Series(te_columns[f'{col}_{key}']) return textual_entailment_df def TableMaking(verbalised_claims_df_final, result): verbalised_claims_df_final.set_index('reference_id', inplace=True) result.set_index('reference_id', inplace=True) results = pd.concat([verbalised_claims_df_final, result], axis=1) results['triple'] = results[['entity_label', 'property_label', 'object_label']].apply(lambda x: ', '.join(x), axis=1) all_result = pd.DataFrame() for idx, row in results.iterrows(): aResult = pd.DataFrame(row["nlp_sentences_TOP_N"])[['sentence','score']] aResult.rename(columns={'score': 'Relevance_score'}, inplace=True) aResult = pd.concat([aResult, pd.DataFrame(row["evidence_TE_labels_all_TOP_N"], columns=['TextEntailment'])], axis=1) aResult = pd.concat([aResult, pd.DataFrame(np.max(row["evidence_TE_prob_all_TOP_N"], axis=1), columns=['Entailment_score'])], axis=1) aResult = aResult.reindex(columns=['sentence', 'TextEntailment', 'Entailment_score','Relevance_score']) aBox = pd.DataFrame({'triple': [row["triple"]], 'url': row['url'],'Results': [aResult]}) all_result = pd.concat([all_result,aBox], axis=0) def dataframe_to_html(all_result): html = '
' for triple in all_result['triple'].unique(): html += f'