import gradio as gr from nbconvert import export import numpy as np from fastai.vision.all import * import pathlib import timm plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath learner = load_learner("model.pkl") categories = ('happy', 'upset') def smileOrFrown(im): pred,idx,probs = learner.predict(im) actualPred = "happy" if (pred == "human face upset"): actualPred = "upset" return actualPred + " " + str(dict(zip(categories, map(float, probs)))) demo = gr.Interface( smileOrFrown, gr.Image(source="webcam", streaming=True), "text", live=True ) demo.launch()