# -*- coding:utf-8 -*-
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import logging
import json
import gradio as gr
# import openai
import os
import traceback
import requests
# import markdown
import csv
import mdtex2html
from pypinyin import lazy_pinyin
from presets import *
import tiktoken
from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import datetime
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
if TYPE_CHECKING:
from typing import TypedDict
class DataframeData(TypedDict):
headers: List[str]
data: List[List[str | int | bool]]
initial_prompt = "You are a helpful assistant."
API_URL = "https://api.openai.com/v1/chat/completions"
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"
def postprocess(
self, y: List[Tuple[str | None, str | None]]
) -> List[Tuple[str | None, str | None]]:
"""
Parameters:
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
Returns:
List of tuples representing the message and response. Each message and response will be a string of HTML.
"""
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
# None if message is None else markdown.markdown(message),
# None if response is None else markdown.markdown(response),
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
def count_token(input_str):
encoding = tiktoken.get_encoding("cl100k_base")
length = len(encoding.encode(input_str))
return length
def parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'
'
else:
lines[i] = f'
'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "
"+line
text = "".join(lines)
return text
def construct_text(role, text):
return {"role": role, "content": text}
def construct_user(text):
return construct_text("user", text)
def construct_system(text):
return construct_text("system", text)
def construct_assistant(text):
return construct_text("assistant", text)
def construct_token_message(token, stream=False):
return f"Token 计数: {token}"
def get_response(openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
history = [construct_system(system_prompt), *history]
payload = {
"model": selected_model,
"messages": history, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
if stream:
timeout = timeout_streaming
else:
timeout = timeout_all
response = requests.post(API_URL, headers=headers, json=payload, stream=True, timeout=timeout)
return response
def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model):
def get_return_value():
return chatbot, history, status_text, all_token_counts
logging.info("实时回答模式")
partial_words = ""
counter = 0
status_text = "开始实时传输回答……"
history.append(construct_user(inputs))
history.append(construct_assistant(""))
chatbot.append((parse_text(inputs), ""))
user_token_count = 0
if len(all_token_counts) == 0:
system_prompt_token_count = count_token(system_prompt)
user_token_count = count_token(inputs) + system_prompt_token_count
else:
user_token_count = count_token(inputs)
all_token_counts.append(user_token_count)
logging.info(f"输入token计数: {user_token_count}")
yield get_return_value()
try:
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, True, selected_model)
except requests.exceptions.ConnectTimeout:
status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
yield get_return_value()
return
except requests.exceptions.ReadTimeout:
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
yield get_return_value()
return
yield get_return_value()
error_json_str = ""
for chunk in tqdm(response.iter_lines()):
if counter == 0:
counter += 1
continue
counter += 1
# check whether each line is non-empty
if chunk:
chunk = chunk.decode()
chunklength = len(chunk)
try:
chunk = json.loads(chunk[6:])
except json.JSONDecodeError:
logging.info(chunk)
error_json_str += chunk
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
yield get_return_value()
continue
# decode each line as response data is in bytes
if chunklength > 6 and "delta" in chunk['choices'][0]:
finish_reason = chunk['choices'][0]['finish_reason']
status_text = construct_token_message(sum(all_token_counts), stream=True)
if finish_reason == "stop":
yield get_return_value()
break
try:
partial_words = partial_words + chunk['choices'][0]["delta"]["content"]
except KeyError:
status_text = standard_error_msg + "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " + str(sum(all_token_counts))
yield get_return_value()
break
history[-1] = construct_assistant(partial_words)
chatbot[-1] = (parse_text(inputs), parse_text(partial_words))
all_token_counts[-1] += 1
yield get_return_value()
def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model):
logging.info("一次性回答模式")
history.append(construct_user(inputs))
history.append(construct_assistant(""))
chatbot.append((parse_text(inputs), ""))
all_token_counts.append(count_token(inputs))
try:
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, False, selected_model)
except requests.exceptions.ConnectTimeout:
status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
except requests.exceptions.ProxyError:
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
except requests.exceptions.SSLError:
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
history[-1] = construct_assistant(content)
chatbot[-1] = (parse_text(inputs), parse_text(content))
total_token_count = response["usage"]["total_tokens"]
all_token_counts[-1] = total_token_count - sum(all_token_counts)
status_text = construct_token_message(total_token_count)
return chatbot, history, status_text, all_token_counts
def predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model = MODELS[0], use_websearch_checkbox = False, should_check_token_count = True): # repetition_penalty, top_k
logging.info("输入为:" +colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
if use_websearch_checkbox:
results = ddg(inputs, max_results=3)
web_results = []
for idx, result in enumerate(results):
logging.info(f"搜索结果{idx + 1}:{result}")
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
web_results = "\n\n".join(web_results)
today = datetime.datetime.today().strftime("%Y-%m-%d")
inputs = websearch_prompt.replace("{current_date}", today).replace("{query}", inputs).replace("{web_results}", web_results)
if len(openai_api_key) != 51:
status_text = standard_error_msg + no_apikey_msg
logging.info(status_text)
chatbot.append((parse_text(inputs), ""))
if len(history) == 0:
history.append(construct_user(inputs))
history.append("")
all_token_counts.append(0)
else:
history[-2] = construct_user(inputs)
yield chatbot, history, status_text, all_token_counts
return
if stream:
yield chatbot, history, "开始生成回答……", all_token_counts
if stream:
logging.info("使用流式传输")
iter = stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model)
for chatbot, history, status_text, all_token_counts in iter:
yield chatbot, history, status_text, all_token_counts
else:
logging.info("不使用流式传输")
chatbot, history, status_text, all_token_counts = predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model)
yield chatbot, history, status_text, all_token_counts
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
if len(history) > 1 and history[-1]['content'] != inputs:
logging.info("回答为:" +colorama.Fore.BLUE + f"{history[-1]['content']}" + colorama.Style.RESET_ALL)
if stream:
max_token = max_token_streaming
else:
max_token = max_token_all
if sum(all_token_counts) > max_token and should_check_token_count:
status_text = f"精简token中{all_token_counts}/{max_token}"
logging.info(status_text)
yield chatbot, history, status_text, all_token_counts
iter = reduce_token_size(openai_api_key, system_prompt, history, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model=selected_model, hidden=True)
for chatbot, history, status_text, all_token_counts in iter:
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
yield chatbot, history, status_text, all_token_counts
def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model = MODELS[0]):
logging.info("重试中……")
if len(history) == 0:
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
return
history.pop()
inputs = history.pop()["content"]
token_count.pop()
iter = predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream, selected_model=selected_model)
logging.info("重试完毕")
for x in iter:
yield x
def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model = MODELS[0], hidden=False):
logging.info("开始减少token数量……")
iter = predict(openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, stream=stream, selected_model = selected_model, should_check_token_count=False)
logging.info(f"chatbot: {chatbot}")
for chatbot, history, status_text, previous_token_count in iter:
history = history[-2:]
token_count = previous_token_count[-1:]
if hidden:
chatbot.pop()
yield chatbot, history, construct_token_message(sum(token_count), stream=stream), token_count
logging.info("减少token数量完毕")
def delete_last_conversation(chatbot, history, previous_token_count):
if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]:
logging.info("由于包含报错信息,只删除chatbot记录")
chatbot.pop()
return chatbot, history
if len(history) > 0:
logging.info("删除了一组对话历史")
history.pop()
history.pop()
if len(chatbot) > 0:
logging.info("删除了一组chatbot对话")
chatbot.pop()
if len(previous_token_count) > 0:
logging.info("删除了一组对话的token计数记录")
previous_token_count.pop()
return chatbot, history, previous_token_count, construct_token_message(sum(previous_token_count))
def save_chat_history(filename, system, history, chatbot):
logging.info("保存对话历史中……")
if filename == "":
return
if not filename.endswith(".json"):
filename += ".json"
os.makedirs(HISTORY_DIR, exist_ok=True)
json_s = {"system": system, "history": history, "chatbot": chatbot}
logging.info(json_s)
with open(os.path.join(HISTORY_DIR, filename), "w") as f:
json.dump(json_s, f, ensure_ascii=False, indent=4)
logging.info("保存对话历史完毕")
def load_chat_history(filename, system, history, chatbot):
logging.info("加载对话历史中……")
try:
with open(os.path.join(HISTORY_DIR, filename), "r") as f:
json_s = json.load(f)
try:
if type(json_s["history"][0]) == str:
logging.info("历史记录格式为旧版,正在转换……")
new_history = []
for index, item in enumerate(json_s["history"]):
if index % 2 == 0:
new_history.append(construct_user(item))
else:
new_history.append(construct_assistant(item))
json_s["history"] = new_history
logging.info(new_history)
except:
# 没有对话历史
pass
logging.info("加载对话历史完毕")
return filename, json_s["system"], json_s["history"], json_s["chatbot"]
except FileNotFoundError:
logging.info("没有找到对话历史文件,不执行任何操作")
return filename, system, history, chatbot
def sorted_by_pinyin(list):
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0])
def get_file_names(dir, plain=False, filetypes=[".json"]):
logging.info(f"获取文件名列表,目录为{dir},文件类型为{filetypes},是否为纯文本列表{plain}")
files = []
try:
for type in filetypes:
files += [f for f in os.listdir(dir) if f.endswith(type)]
except FileNotFoundError:
files = []
files = sorted_by_pinyin(files)
if files == []:
files = [""]
if plain:
return files
else:
return gr.Dropdown.update(choices=files)
def get_history_names(plain=False):
logging.info("获取历史记录文件名列表")
return get_file_names(HISTORY_DIR, plain)
def load_template(filename, mode=0):
logging.info(f"加载模板文件{filename},模式为{mode}(0为返回字典和下拉菜单,1为返回下拉菜单,2为返回字典)")
lines = []
logging.info("Loading template...")
if filename.endswith(".json"):
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f:
lines = json.load(f)
lines = [[i["act"], i["prompt"]] for i in lines]
else:
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile:
reader = csv.reader(csvfile)
lines = list(reader)
lines = lines[1:]
if mode == 1:
return sorted_by_pinyin([row[0] for row in lines])
elif mode == 2:
return {row[0]:row[1] for row in lines}
else:
choices = sorted_by_pinyin([row[0] for row in lines])
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0])
def get_template_names(plain=False):
logging.info("获取模板文件名列表")
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"])
def get_template_content(templates, selection, original_system_prompt):
logging.info(f"应用模板中,选择为{selection},原始系统提示为{original_system_prompt}")
try:
return templates[selection]
except:
return original_system_prompt
def reset_state():
logging.info("重置状态")
return [], [], [], construct_token_message(0)
def reset_textbox():
return gr.update(value='')