import torch import torchvision from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights from PIL import Image import numpy as np import matplotlib.pyplot as plt import gradio as gr import os import sys # Load the pre-trained model once model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT) model.eval() # COCO class names COCO_INSTANCE_CATEGORY_NAMES = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # Gradio-compatible detection function def detect_objects(image, threshold=0.5): if image is None: print("Image is None, returning empty output", file=sys.stderr) # Create a blank image as output blank_img = Image.new('RGB', (400, 400), color='white') plt.figure(figsize=(10, 10)) plt.imshow(blank_img) plt.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center', transform=plt.gca().transAxes, fontsize=20) plt.axis('off') output_path = "blank_output.png" plt.savefig(output_path) plt.close() return output_path try: print(f"Processing image of type {type(image)} and threshold {threshold}", file=sys.stderr) # Make sure threshold is a valid number if threshold is None: threshold = 0.5 print("Threshold was None, using default 0.5", file=sys.stderr) # Convert threshold to float if it's not already threshold = float(threshold) transform = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms() image_tensor = transform(image).unsqueeze(0) with torch.no_grad(): prediction = model(image_tensor)[0] boxes = prediction['boxes'].cpu().numpy() labels = prediction['labels'].cpu().numpy() scores = prediction['scores'].cpu().numpy() image_np = np.array(image) plt.figure(figsize=(10, 10)) plt.imshow(image_np) ax = plt.gca() for box, label, score in zip(boxes, labels, scores): # Explicit debug prints to trace the comparison issue print(f"Score: {score}, Threshold: {threshold}, Type: {type(score)}/{type(threshold)}", file=sys.stderr) if score >= threshold: x1, y1, x2, y2 = box ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, color='red', linewidth=2)) class_name = COCO_INSTANCE_CATEGORY_NAMES[label] ax.text(x1, y1, f'{class_name}: {score:.2f}', bbox=dict(facecolor='yellow', alpha=0.5), fontsize=12, color='black') plt.axis('off') plt.tight_layout() # Save the figure to return output_path = "output.png" plt.savefig(output_path) plt.close() return output_path except Exception as e: print(f"Error in detect_objects: {e}", file=sys.stderr) import traceback traceback.print_exc(file=sys.stderr) # Create an error image error_img = Image.new('RGB', (400, 400), color='white') plt.figure(figsize=(10, 10)) plt.imshow(error_img) plt.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center', transform=plt.gca().transAxes, fontsize=12, wrap=True) plt.axis('off') error_path = "error_output.png" plt.savefig(error_path) plt.close() return error_path # Create direct file paths for examples # These exact filenames match what's visible in your repository examples = [ os.path.join("/home/user/app", "TEST_IMG_1.jpg"), os.path.join("/home/user/app", "TEST_IMG_2.JPG"), os.path.join("/home/user/app", "TEST_IMG_3.jpg"), os.path.join("/home/user/app", "TEST_IMG_4.jpg") ] # Create Gradio interface # Important: For Gradio examples, we need to create a list of lists example_list = [[path] for path in examples if os.path.exists(path)] print(f"Found {len(example_list)} valid examples: {example_list}", file=sys.stderr) # Create Gradio interface with a simplified approach interface = gr.Interface( fn=detect_objects, inputs=[ gr.Image(type="pil", label="Input Image"), gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold") ], outputs=gr.Image(type="filepath", label="Detected Objects"), title="Faster R-CNN Object Detection", description="Upload an image to detect objects using a pretrained Faster R-CNN model.", examples=example_list, cache_examples=False # Disable caching to avoid potential issues ) # Launch with specific configuration for Hugging Face if __name__ == "__main__": # Launch with debug mode enabled interface.launch(debug=True)