import gradio as gr from convert_url_to_diffusers_sdxl_gr import ( convert_url_to_diffusers_repo, SCHEDULER_CONFIG_MAP, ) vaes = [ "", "https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl.vae.safetensors", "https://huggingface.co/nubby/blessed-sdxl-vae-fp16-fix/blob/main/sdxl_vae-fp16fix-blessed.safetensors", ] loras = [ "", "https://huggingface.co/SPO-Diffusion-Models/SPO-SDXL_4k-p_10ep_LoRA/blob/main/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors", "https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_smallcfg_2step_converted.safetensors", "https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_smallcfg_4step_converted.safetensors", "https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_smallcfg_8step_converted.safetensors", "https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_normalcfg_8step_converted.safetensors", "https://huggingface.co/wangfuyun/PCM_Weights/blob/main/sdxl/pcm_sdxl_normalcfg_16step_converted.safetensors", "https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-1step-lora.safetensors", "https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-2steps-lora.safetensors", "https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-4steps-lora.safetensors", "https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-8steps-CFG-lora.safetensors", "https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-12steps-CFG-lora.safetensors", "https://huggingface.co/latent-consistency/lcm-lora-sdxl/blob/main/pytorch_lora_weights.safetensors", ] schedulers = list(SCHEDULER_CONFIG_MAP.keys()) preset_dict = { "Default": [True, "", "Euler a", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0], "Bake in standard VAE": [True, "https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl.vae.safetensors", "Euler a", "", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0], "Hyper-SDXL & SPO": [True, "https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl.vae.safetensors", "TCD", "https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-8steps-CFG-lora.safetensors", 1.0, "", 1.0, "", 1.0, "", 1.0, "", 1.0], } def set_presets(preset: str="Default"): p = [] if preset in preset_dict.keys(): p = preset_dict[preset] else: p = preset_dict["Default"] return p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12] css = """""" with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo: gr.Markdown("# Download and convert any Stable Diffusion XL safetensors to Diffusers and create your repo") gr.Markdown( f""" - [A CLI version of this tool (without uploading-related function) is available here](https://huggingface.co/spaces/John6666/sdxl-to-diffusers-v2/tree/main/local). **⚠️IMPORTANT NOTICE⚠️**
From an information security standpoint, it is dangerous to expose your access token or key to others. If you do use it, I recommend that you duplicate this space on your own account before doing so. Keys and tokens could be set to SECRET (HF_TOKEN, CIVITAI_API_KEY) if it's placed in your own space. It saves you the trouble of typing them in.

**The steps are the following**: - Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens). - Input a model download url from the Hub or Civitai or other sites. - If you want to download a model from Civitai, paste a Civitai API Key. - Input your HF user ID. e.g. 'yourid'. - Input your new repo name. If empty, auto-complete. e.g. 'newrepo'. - Set the parameters. If not sure, just use the defaults. - Click "Submit". - Patiently wait until the output changes. It takes approximately 2 to 3 minutes (downloading from HF). """ ) with gr.Column(): dl_url = gr.Textbox(label="URL to download", placeholder="https://huggingface.co/bluepen5805/blue_pencil-XL/blob/main/blue_pencil-XL-v7.0.0.safetensors", value="", max_lines=1) hf_user = gr.Textbox(label="Your HF user ID", placeholder="username", value="", max_lines=1) hf_repo = gr.Textbox(label="New repo name", placeholder="reponame", info="If empty, auto-complete", value="", max_lines=1) hf_token = gr.Textbox(label="Your HF write token", placeholder="hf_...", value="", max_lines=1) civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1) is_upload_sf = gr.Checkbox(label="Upload single safetensors file into new repo", value=False) presets = gr.Radio(label="Presets", choices=list(preset_dict.keys()), value="Default") with gr.Accordion("Advanced settings", open=False): is_half = gr.Checkbox(label="Half precision", value=True) vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True) scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a") lora1 = gr.Dropdown(label="LoRA1", choices=loras, value="", allow_custom_value=True) lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale") lora2 = gr.Dropdown(label="LoRA2", choices=loras, value="", allow_custom_value=True) lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale") lora3 = gr.Dropdown(label="LoRA3", choices=loras, value="", allow_custom_value=True) lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale") lora4 = gr.Dropdown(label="LoRA4", choices=loras, value="", allow_custom_value=True) lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale") lora5 = gr.Dropdown(label="LoRA5", choices=loras, value="", allow_custom_value=True) lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale") run_button = gr.Button(value="Submit") repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=None) output_md = gr.Markdown(label="Output") gr.DuplicateButton(value="Duplicate Space") gr.on( triggers=[run_button.click], fn=convert_url_to_diffusers_repo, inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_upload_sf, repo_urls, is_half, vae, scheduler, lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s], outputs=[repo_urls, output_md], ) presets.change( fn=set_presets, inputs=[presets], outputs=[is_half, vae, scheduler, lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s], queue=False, ) demo.queue() demo.launch()