import gradio as gr from chatllm import ( chat_response, get_llm_model, set_llm_model, get_llm_model_info, get_llm_language, set_llm_language, get_llm_sysprompt, get_llm_sysprompt_mode, set_llm_sysprompt_mode, ) # Custom CSS for Gradio app css = ''' .gradio-container{max-width: 1000px !important} h1{text-align:center} footer { visibility: hidden } ''' # Create Gradio interface with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as app: with gr.Column(): with gr.Group(): chatbot = gr.Chatbot(likeable=False, show_copy_button=True, show_share_button=False, layout="bubble", container=True) with gr.Row(): chat_query = gr.Textbox(label="Search Query", placeholder="hatsune miku", value="", scale=3) chat_clear = gr.Button("🗑️ Clear", scale=1) with gr.Row(): chat_msg = gr.Textbox(label="Message", placeholder="Input message with or without query and press Enter or click Sumbit.", value="", scale=3) chat_submit = gr.Button("Submit", scale=1) with gr.Accordion("Additional inputs", open=False): chat_model = gr.Dropdown(choices=get_llm_model(), value=get_llm_model()[0], allow_custom_value=True, label="Model") chat_model_info = gr.Markdown(value=get_llm_model_info(get_llm_model()[0]), label="Model info") with gr.Row(): chat_mode = gr.Dropdown(choices=get_llm_sysprompt_mode(), value=get_llm_sysprompt_mode()[0], allow_custom_value=False, label="Mode") chat_lang = gr.Dropdown(choices=get_llm_language(), value="language same as user input", allow_custom_value=True, label="Output language") chat_tokens = gr.Slider(minimum=1, maximum=4096, value=2000, step=1, label="Max tokens") chat_temp = gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature") chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") chat_fp = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="Frequency penalty") chat_sysmsg = gr.Textbox(value=get_llm_sysprompt(), interactive=True, label="System message") examples = gr.Examples( examples = [ ["Describe this person.", "Kafuu Chino from Gochiusa"], ["Hello", ""], ], inputs=[chat_msg, chat_query], ) gr.Markdown( f"""This demo was created in reference to the following demos.
[prithivMLmods/WEB-DAC](https://huggingface.co/spaces/prithivMLmods/WEB-DAC), [featherless-ai/try-this-model](https://huggingface.co/spaces/featherless-ai/try-this-model), """ ) gr.DuplicateButton(value="Duplicate Space") gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.") gr.on( triggers=[chat_msg.submit, chat_query.submit, chat_submit.click], fn=chat_response, inputs=[chat_msg, chatbot, chat_query, chat_tokens, chat_temp, chat_topp, chat_fp], outputs=[chatbot], queue=True, show_progress="full", trigger_mode="once", ) chat_clear.click(lambda: (None, None, None), None, [chatbot, chat_msg, chat_query], queue=False) chat_model.change(set_llm_model, [chat_model], [chat_model, chat_model_info], queue=True, show_progress="full")\ .success(lambda: None, None, chatbot, queue=False) chat_mode.change(set_llm_sysprompt_mode, [chat_mode], [chat_sysmsg], queue=False) chat_lang.change(set_llm_language, [chat_lang], [chat_sysmsg], queue=False) if __name__ == "__main__": app.queue() app.launch()