import gradio as gr import torch import spaces from diffusers import DiffusionPipeline from pathlib import Path import gc import subprocess subprocess.run('pip cache purge', shell=True) device = "cuda" if torch.cuda.is_available() else "cpu" torch.set_grad_enabled(False) models = [ "camenduru/FLUX.1-dev-diffusers", "black-forest-labs/FLUX.1-schnell", "sayakpaul/FLUX.1-merged", "John6666/blue-pencil-flux1-v001-fp8-flux", "John6666/copycat-flux-test-fp8-v11-fp8-flux", "John6666/nepotism-fuxdevschnell-v3aio-flux", "John6666/niji-style-flux-devfp8-fp8-flux", "John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux", "John6666/fastflux-unchained-t5f16-fp8-flux", "John6666/the-araminta-flux1a1-fp8-flux", "John6666/acorn-is-spinning-flux-v11-fp8-flux", "John6666/fluxescore-dev-v10fp16-fp8-flux", # "", ] num_loras = 3 def is_repo_name(s): import re return re.fullmatch(r'^[^/,\s]+?/[^/,\s]+?$', s) def is_repo_exists(repo_id): from huggingface_hub import HfApi api = HfApi() try: if api.repo_exists(repo_id=repo_id): return True else: return False except Exception as e: print(f"Error: Failed to connect {repo_id}. ") return True # for safe def clear_cache(): torch.cuda.empty_cache() gc.collect() def get_repo_safetensors(repo_id: str): from huggingface_hub import HfApi api = HfApi() try: if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[]) files = api.list_repo_files(repo_id=repo_id) except Exception as e: print(f"Error: Failed to get {repo_id}'s info. ") print(e) return gr.update(choices=[]) files = [f for f in files if f.endswith(".safetensors")] if len(files) == 0: return gr.update(value="", choices=[]) else: return gr.update(value=files[0], choices=files) # Initialize the base model base_model = models[0] pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) def change_base_model(repo_id: str, progress=gr.Progress(track_tqdm=True)): global pipe try: if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return progress(0, f"Loading model: {repo_id}") clear_cache() pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16) progress(1, f"Model loaded: {repo_id}") except Exception as e: print(e) return gr.update(visible=True) def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str): lorajson[i]["name"] = str(name) if name != "None" else "" lorajson[i]["scale"] = float(scale) lorajson[i]["filename"] = str(filename) lorajson[i]["trigger"] = str(trigger) return lorajson def is_valid_lora(lorajson: list[dict]): valid = False for d in lorajson: if "name" in d.keys() and d["name"] and d["name"] != "None": valid = True return valid def get_trigger_word(lorajson: list[dict]): trigger = "" for d in lorajson: if "name" in d.keys() and d["name"] and d["name"] != "None" and d["trigger"]: trigger += ", " + d["trigger"] return trigger # https://github.com/huggingface/diffusers/issues/4919 def fuse_loras(pipe, lorajson: list[dict]): if not lorajson or not isinstance(lorajson, list): return a_list = [] w_list = [] for d in lorajson: if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None": continue k = d["name"] if is_repo_name(k) and is_repo_exists(k): a_name = Path(k).stem pipe.load_lora_weights(k, weight_name=d["filename"], adapter_name = a_name) elif not Path(k).exists(): print(f"LoRA not found: {k}") continue else: w_name = Path(k).name a_name = Path(k).stem pipe.load_lora_weights(k, weight_name = w_name, adapter_name = a_name) a_list.append(a_name) w_list.append(d["scale"]) if not a_list: return pipe.set_adapters(a_list, adapter_weights=w_list) pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0) #pipe.unload_lora_weights() fuse_loras.zerogpu = True def description_ui(): gr.Markdown( """ - Mod of [multimodalart/flux-lora-the-explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer), [gokaygokay/FLUX-Prompt-Generator](https://huggingface.co/spaces/gokaygokay/FLUX-Prompt-Generator). """ )