File size: 5,307 Bytes
5d92a23 0d89801 5d92a23 0d89801 031c42b 83cae6c 0d89801 5d92a23 f0e8d1f 0d89801 f0e8d1f 0d89801 5d92a23 11414b7 d2b30ac 11414b7 5d92a23 d2b30ac 5d92a23 4fda942 5d92a23 0d89801 5d92a23 0d89801 5d92a23 0d89801 5d92a23 867296e 5d92a23 8a84578 0d89801 5d92a23 867296e 5d92a23 8a84578 0d89801 3e075bb 5d92a23 11414b7 5d92a23 11414b7 5d92a23 0d89801 5d92a23 0d89801 5d92a23 0d89801 5d92a23 0d89801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from typing import Tuple
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline
MARKDOWN = """
# FLUX.1 Inpainting 🔥
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
for taking it to the next level by enabling inpainting with the FLUX.
"""
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
def resize_image_dimensions(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = 2048
) -> Tuple[int, int]:
width, height = original_resolution_wh
if width <= maximum_dimension and height <= maximum_dimension:
width = width - (width % 32)
height = height - (height % 32)
return width, height
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
@spaces.GPU(duration=150)
def process(
input_image_editor: dict,
input_text: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
progress=gr.Progress(track_tqdm=True)
):
if not input_text:
gr.Info("Please enter a text prompt.")
return None
image = input_image_editor['background']
mask = input_image_editor['layers'][0]
if not image:
gr.Info("Please upload an image.")
return None
if not mask:
gr.Info("Please draw a mask on the image.")
return None
width, height = resize_image_dimensions(original_resolution_wh=image.size)
resized_image = image.resize((width, height), Image.LANCZOS)
resized_mask = mask.resize((width, height), Image.NEAREST)
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
result = pipe(
prompt=input_text,
image=resized_image,
mask_image=resized_mask,
width=width,
height=height,
strength=strength_slider,
generator=generator,
num_inference_steps=num_inference_steps_slider
).images[0]
print('INFERENCE DONE')
return result, resized_mask
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image_editor_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
with gr.Row():
input_text_component = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
submit_button_component = gr.Button(
value='Submit', variant='primary', scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=False)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.01,
value=0.75,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Column():
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Generated image')
with gr.Accordion("Debug", open=False):
output_mask_component = gr.Image(
type='pil', image_mode='RGB', label='Input mask')
submit_button_component.click(
fn=process,
inputs=[
input_image_editor_component,
input_text_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component
],
outputs=[
output_image_component,
output_mask_component
]
)
demo.launch(debug=False, show_error=True)
|